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ABSTRACT

We designed a system to infer multimodal itineraries traveled by
a user from a combination of smartphone sensor data (e.g., GPS,
Wi-Fi, accelerometer) and knowledge of the transport network infras-
tructure (e.g., road and rail maps, public transportation timetables).
The system uses a Transportation network that captures the set of
possible paths of this network for the modes, e.g., foot, bicycle,
road_vehicle, and rail. This Transportation network is con-
structed from OpenStreetMap data and public transportation routes
published online by transportation agencies in GTFS format. The
system infers itineraries from a sequence of smartphone observations
in two phases. The first phase uses a dynamic Bayesian network that
models the probabilistic relationship between paths in Transporta-
tion network and sensor data. The second phase attempts to match
portions recognized as road_vehicle or rail with possible public
transportation routes of type bus, train, metro, or tram extracted
from the GTFS source. We evaluated the performance of our system
with data from users traveling over the Paris area who were asked to
record data for different trips via an Android application. Itineraries
were annotated with modes and public transportation routes taken
and we report on the results of the recognition.

Categories and Subject Descriptors
H.2.8 [Database Applications]: Spatial databases and GIS
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1. INTRODUCTION

The democratization of connected and sensor-rich personal mo-
bile devices has increased the demand for context-aware applications
taking advantage of the information they are able to generate. Tech-
nology is still far from taking full advantage of smartphone sensors
to understand the users’ daily movements in urban environments.
In this paper, we present Hup-me, a system we designed that uses a
wide range of sensor data to infer a timeline of user’s multimodal
activities. Motivated by the increasing interest in activity tracking de-
vices (e.g. calories spent and quality of sleep monitors), we believe
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that automatic inference of rich transportation routines may allow
the construction of intelligent travel assistants. Such assistants may
exploit their understanding of our travel patterns to suggest pertinent
alternative itineraries in particular when unexpected events happen
to affect our usual one (e.g. stopped train, empty bike station).

To infer the itinerary of a user, our system uses a Transportation
network to generate candidate itineraries. We introduce an algorithm,
called Multimodal Itinerary Matching, that looks for the itinerary of
maximum probability given some observations of a user.

In such a setting, a critical aspect is that of the data that is used
in the algorithm. Sensor data can be classified based on the kind
of knowledge they deliver (e.g., location, dynamics) and their char-
acteristics (e.g., frequency, accuracy). We use user observations
obtained from multiple smartphone sensors, namely, GPS, Wi-Fi,
Cellular, Accelerometer and Bluetooth. The system has also ac-
cess to geographic data (roads, railways), public transportation data
(routes and schedules). The system constructs a Transportation
network from OpenStreetMap [11] data and public transportation
routes published online by transportation agencies in GTFS [9] for-
mat. Difficulties arise from lack of data (e.g., lack of positioning
inside the subway), from too much data (e.g., combination of possi-
bly conflicting localization data, overlapping public transportation
lines), and inaccuracies or imprecisions in the data (e.g., map errors,
imprecise location).

The algorithm infers, from these observations and the Transporta-
tion network, the multimodal itinerary of the user. The algorithm
has two phases. The first phase uses a dynamic Bayesian network
[19] that models the probabilistic relationship between paths in the
Transportation network and sensor data. The result is a path in the
Transportation network employing the following modes: foot, bi-
cycle, road_vehicle, and rail. Inference is performed using a
particle filter [7, 8, 28]. The second phase refines this path by match-
ing unimodal segments recognized as road_vehicle or rail with
public transportation routes of type bus, train, metro, or tram
directly extracted from the GTFS source. For each candidate uni-
modal segment, a score is computed with respect to a candidate
public transportation route. Finally, the candidate itinerary with the
highest score is output. We evaluated the performance of the system
using data recorded from users traveling in the Paris area. For this,
we provided them with an Android application, Hup-me:User, we
developed that records the required smartphone sensor data. We
manually annotated the journeys that had been recorded. Our an-
notations included the transportation modes as well as the public
transportation routes that had been taken. The Paris region is rich in
public transportation modes: sub-urban train, metro, bus, tram. We
compared the findings of the algorithm to the annotations that are
assumed to be correct. We also report on the execution time of the
algorithm for varying lengths of observation sequences.



2. INPUTS OF THE ALGORITHM

Our algorithm takes two kinds of input data: Transportation
network data, and sensor data.

Transportation Network. We use the notion of a Transporta-
tion network to define the itineraries that a user may take. We define
it as a series of traversability rules over a connected road and rail
infrastructure, termed Spatial network. The Spatial network models
places on Earth (termed nodes) such as road intersections, subway
stations, and their linear connections (termed edges) such as roads
and metro line tunnels. The Transportation network captures move-
ment constraints with respect to a set of transportation modes. For
instance, by foot, one may decide to do a U-turn between two spatial
nodes, and reverse one’s direction, whereas one cannot do that in a
train or on a freeway. A location in a Transportation network 7 is a
tuple (e, d, o, d), where e is an edge of the Spatial network, ¢ is a
direction (either forward or backward), o is a transportation mode,
and d is an offset in [0, length(e)]. A path in T is defined as a
sequence of locations in 7", where each pair of consecutive locations
verifies 7 transition rules. The Spatial network and Transportation
network are built from online public sources. For both, geographic
information from OpenStreetMap (OSM) is used, and the latter
uses additional rail transportation data from public transportation
schedules published by transportation agencies in the General Tran-
sit Feed Specification format. Rail transportation schedules and
OSM railway data are automatically combined using an alignment
algorithm we designed.

Sensor data. We designed Hup-me:User, a smartphone app to
collect mobile sensor data from traveling users. The app collects
raw data over a given time interval from different sensors: Satellite
Navigation (GPS/GLONASS), Wi-Fi, Cellular, Accelerometer and
Bluetooth. To recognize the user’s itinerary, raw sensor data is trans-
formed into a feature vector of a smaller dimension that is composed
of three main dimensions: location, dynamics (e.g. acceleration),
and contextual (e.g. Bluetooth).

Location observation. Smartphone’s location is determined
with varying degrees of accuracy using Satellite Navigation (10-
meter accuracy), Wi-Fi Networks (100-meter) and/or Cellular Net-
works (1-kilometer). Satellite location is sampled at 1 Hz and is
also capable of measuring the movement’s speed vector. Satellite
location might be unavailable in areas with a partial line of sight
of the sky (e.g. building, underground). A location is given by a
center point, an accuracy value and, if available, a speed value. The
accuracy is given by the estimated standard deviation of the location
error. The location sequence forms a non-uniform time-series over
a finite time interval. The sequence if resampled at a rate of 1 Hz by
picking the sample with the highest accuracy (i.e. with the smallest
radius) over a sliding 1-second window. If no sample is available
within the window, no observation is retained. For performance
reasons, locations above a certain accuracy threshold are discarded.

Dynamics observation. Accelerometer data sampled at 20 Hz
is processed using existing state of the art techniques [24, 25] from
which we output confidence levels over possible 5 possible activities:
stationary, foot, bicycle, motorized, unknown. The activity
unknown is used when the recognition of any other failed.

Contextual. Information about the user’s environment can be
inferred from the signal levels of Bluetooth, Wi-Fi, Cellular and
Satellite. Signal reception depends on whether the user is in a

building, underground, or outside in an open-field. An interesting
property of Bluetooth is that more people carry discoverable net-
work emitters with them (smart-watches, smartphones). From the
number of discoverable Bluetooth network around the user it might
be possible to estimate to number of people around. Also, if other
people happen to move with the user, such as when taking the bus or
metro, but also when sharing a car with multiple people, then some
of these networks will stay in range over the course of the journey.
The number of networks that stay in range over two consecutive
scans can be computed from the unique identifiers used by network
emitters. We call this figure recurrent address count (RAC). For
each signal type, we measure three dimensions: Number of emit-
ters (satellites, cellular towers, Wi-Fi access-points, discoverable
Bluetooth devices), Signal-to-Noise Ratio/Received Signal Strength
Indication (mean and variance over emitters) and RAC.

3. THE ALGORITHM

We developed an algorithm, called Multimodal Itinerary Match-
ing, that given a Transportation network 7, and a sequence of
observations o1 finds a sequence (l1,...,Ir) of locations in 7
and a path p = limilz - lr—17wr—1lr between these locations
(called the itinerary) best matching the observation sequence. The
algorithm works in two phases: 1. Filtering, which derives the most
likely itinerary in 7 for the modes foot, road_vehicle, bicycle,
and rail, and 2. Smoothing, which derives the most likely public
transportation line for rail and road vehicle modes.

Filtering. Toimplement Phase 1, we use a probabilistic algorithm
based on a dynamic Bayesian network [14] (DBN). The DBN has
time span 7'. The DBN models the state of a traveler at each time-
step t via a set of random variables, as well as conditional probability
distributions relating observations at time ¢ with respect to the trav-
eler state at time ¢ and relating the traveler’s state at time ¢ + 1 with
respect to her state at time ¢. The set of random variables modeling
the traveler state is split into two groups x; and y:, where x: is the
single continuous-domain variable representing the traveler’s offset
on a edge of the Spatial network, while y; represents finite domain
variables such as the traveler’s mode, the path she followed, or mode
transition times. The algorithm, termed Multimodal Itinerary Fil-
tering, processes observations in sequence and generates candidate
intermediate itineraries by projecting each location observation into
a set of candidate Transportation network 7 locations, and gener-
ating candidate paths between each consecutive pair of candidate
T locations. It performs approximate inference by maintaining
a posterior density estimate of Pr(yi.¢, + | 01:¢) for each time
t. This estimate is maintained based on the Rao-Blackwellized
particle filter [7, 10] that generates samples of y1.; while keeping
x; in closed form using a Kalman Filter. In particular, our filter
implements sequential importance resampling, which uses a pro-
posal distribution q(y1.+ | 01:+) to generate samples and attaches
weights to particles to approximate the estimated density. After all
observations have been processed, Phase 1 outputs an approximate
Maximum A Posteriori estimate y1.7, that is, a valuation y;.7 for
which Pr(yrr = yvr | 01:4) = [, Pr(yrr,@r | orr) der is
approximately maximal.

Smoothing. Phase 1 of the algorithm ignores the distinction be-
tween certain transportation modes. Phase 2 refines this analysis, by
inferring the exact transportation mode of road_vehicle amongst
car and bus, and the transportation mode of rail amongst tram,
metro, train. For public transportation modes, we infer the ac-
tual routes as defined by the GTFS data. Phase 2 also smooths out



transportation mode transitions to clean up the final itinerary.

Let p1 - - - pr be the path output by the first phase. We split it into
a sequence of r unimodal path segments qi, - - -, g-. The second
phase, begins by reconsidering the mode for any short-length or
short-duration segment g; in-between two segments ¢;—1 and g;+1
whose modes are equal by comparing the mean estimated speed
and variance of ¢; to some threshold tuned for the estimated mode.
Then, given the sequence of mode transition times output by the first
phase, we can compute the duration, the starting time and ending
time of each segment ¢;. For each g; such that its mode is either
road_vehicle or rail, the second phase aims at determining
possible matching GTFS routes for g; and the matching sequence of
stops (a substring of the route stop sequence). Candidates routes are
computed by looking at stops within a distance R of the start and
end locations of g;. To rank a GTFS route p and a sequence of stops
(s1,...,5m) we use the following metrics: (a) the average distance
between each s; and the set of locations in ¢;; (b) the difference
between ¢;’s time duration, and for a vehicle p at that particular
time of the day; (c) the difference in departure time between either
the immediately previous trip or immediately next trip for route p
departing before or after g;’s start time. The result is a mapping from
a candidate route and a stop substring to R3. The best candidate
route is picked using a score value computed from /. Finally, for
road_vehicle segments, we differentiate between car and bus by
using the average Bluetooth component of contextual observations
(a R? vector) over the period of ;.

4. EVALUATION

To evaluate our algorithm, we used Transportation network data
for the Paris region. It encompasses all roads, railways, tram tracks.
It also knows of train, metro, bus, tram routes. The following gives
some intuition on the size of the Transportation network: 808,093
nodes, 1,045,052 road edges, 34,414 rail edges, 3,412 trip patterns.

We implemented the Multimodal Itinerary Matching algorithm
as well as all the necessary data integration, network construction,
path generation algorithms and Android application Hup-me:User in
Scala. We use manual annotations on observation traces to evaluate
different features of the algorithm and fine tune it. In order to facil-
itate annotations, we also developed a Web interface that displays
location data on a map and the other observations on a series of
charts. The annotator then chooses a mode and possibly a route and
or trip pattern for different time intervals in a journey.

We evaluated our implementation in parallel on a 16-core virtual
machine with 104 GB memory implemented by a 2.3 GHz Intel
Xeon ES5 v3. We set the number of particles to 2000. We measured
the execution time of our algorithm with respect to the duration of a
journey. The execution time is roughly linear in the journey duration.
On average, the algorithm takes 0.1638 CPU seconds per second of
journey, with a median of 0.108. We believe the performance can
still be improved, especially with respect to memory consumption,
which has taken up to 10GB for some journeys.

We collected and annotated 87 journeys (42.5 hours) in the Paris
region. Manual annotations were made by one person, prior to run-
ning the algorithm. The annotator was familiar with Paris transporta-
tion system and was given access to all data available to Hup-Me.
Additionally, part of the annotations were given by the travelers
themselves through the mobile application, however most travelers
found it tedious to enter annotations, and most of the annotations
were provided by the annotator. In most cases the annotator was
confident in his annotations, in very few cases he was not completely
sure. After running the algorithm the annotator was confronted with
the results of the algorithm. The algorithm validated his annotations,
and in the few cases there was disagreement, the annotator believes

Predicted mode
foot |bike | car | bus |train |tram|| Time
foot [87T%| 8% [1% [ 1% | 2% | 1% [[ 1068
olbike [ 2% [98%[ 0% [ 0% | 0% [ 0% || 69
g car 5% 2% [82%[10%| 0% | 0% || 718’
< | bus 4% [ 5% [ 0% [90% | 1% | 0% || 419
g
P,

o
Sltrain[12% [ 0% [ 2% [ 3% | 83% | 0% || 149
<[tram |15%| 3% | 6% | 1% | 0% |75%]|| 129’

| Precision [ 91 % [ 36 % [96 % [80 % | 81 % |92 % |[ 2552’

Table 1: Confusion matrix by transportation mode.

bus | train | tram

B%| 8% [99%
| Total Time | 381" | 127" | 98’
Table 2: Percentage of correct transportation line recognition.

the algorithm was wrong. We measured the fraction of time the al-
gorithm predicted j when the true (according to the annotator) mode
was 7. The results are presented in what we call the confusion matrix
(Table 1). The train and metro modes are merged (noted train)
because the dataset was not large enough to analyze this distinction.
The Time column gives the cumulated journey duration for each
mode. When the algorithm guessed the correct mode amongst bus,
train, tram, we evaluated percentage of time for which the correct
transportation line was detected (Table 2). Overall, the results are
comparable to the state of the art [12, 25], considering we infer a
full itinerary and transportation lines. More work has to be done
to improve distinguishing (i) between bus and car modes and (ii)
between different underground lines. We need to further analyze the
relevance of each sensor in different recognition tasks, to improve
the performance of the algorithm. Finally, we want to design a more
sophisticated parameter learning strategy from annotated journeys.

S. CONCLUSION & STATE OF THE ART

Activity recognition, that is concerned with determining the ac-
tions and goals of one or several agents given a series of observations
on their actions and the environment, has gained increased attention
over the years in the fields of articial intelligence, robotics, and ubig-
uitous computing. Our work follows pioneering works published
over the last ten years on sensor-based activity recognition, and
notably accelerometer-based approaches [4, 15, 18, 21, 23]. More
recently, several researchers have focused on transportation mode
identification [12, 24, 29, 30]. Using activity recognition techniques,
we can determine at a point in time whether the user is currently
stationary, walking, running, cycling or in a motor vehicle. In fact,
this technology is already available for developers on the two most
widespread smartphone platforms, namely Android [1] and iOS [2].

Our goal is to determine the transportation modes over the course
of a journey as well as the traveled route. To serve this purpose, and
provide context awareness to travel assistant technologies, location-
based activity tracking were developed, that use positional informa-
tion from an embedded GPS chip to track the user’s most frequent
locations, travel routines and routes taken [3, 6, 16]. Location-based
vehicle tracking has also been successfully used to generate accurate
schedules and provide information about traffic delays to the rest of
the community [5, 26, 27]. Our interest in the long run is to provide
the user with real-time itinerary-aware applications and with an
accurate summary of one’s routines. To this respect, our work is
closely related to [6, 16]. They use a combination of online activity
recognition techniques and location-based map-matching. However,
these works have limitations. They do not distinguish between over-
lapping public transportation routes with different schedules and do



not handle long periods of missing GPS observations. We tackled
these two issues in our system.

Map-matching is the problem of matching a set of positional
observations to a path in a given road network. An exhaustive
survey of map-matching techniques can be found in [22] and more
recent results in [13, 17, 20]. Kalman and particle filtering on
a dynamic Bayesian network are known techniques in the map-
matching literature. However, as stated by [13], dynamic Bayesian
networks encounter the selection bias problem at low frequencies.
Instead, they use, as well as [30], a Conditional Random Field. For
this reason, we exploit observations of many more sensors. Finally,
we also take into consideration timetable and the possibility for
geographic routes to belong to several transport modes and lines.
This increases the difficulty of the problem. In the past, both static
[26] and real-time [25] timetables have been used for tracking user
in a transportation network.

In itinerary detection, the use of a dynamic Bayesian network is
not new. Our work, is to our knowledge, the first one considering
such a complex transportation network (multimodal distinguishing
lines and timetables), with such a rich combination of user data
(both positional sensors and accelerometer). Another novelty of our
approach is in the processing of long periods of time without GPS
observations, which happen frequently in high density urban areas,
e.g., with an underground transit system. The current evaluation of
the algorithm is very promising with respect to mode and trip pattern
recognition. In the future, we plan to perform a more comprehensive
evaluation. A main motivation for Hup-me is to enrich available
personal data (calendar, mail, search history, etc.) to provide new
functionalities such as personal travel assistance.
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