
NNT : 2017SACLN009

Thèse de doctorat
de l’Université Paris-Saclay

préparée à l’École normale supérieure
Paris-Saclay

Ecole doctorale n◦580
Sciences et technologies de l’information et de la communication

Spécialité de doctorat : Informatique
par

M. David Montoya
Une base de connaissance personnelle intégrant les données d’un

utilisateur et une chronologie de ses activités

Thèse présentée et soutenue à Cachan, le 6 mars 2017.

Composition du Jury :

M. Serge Abiteboul Directeur de recherche (Directeur de thèse)
Inria Paris

M. Nicolas Anciaux Chargé de recherche (Examinateur)
Inria Saclay

Mme. Salima Benbernou Professeur (Président)
Université Paris Descartes

Mme. Angela Bonifati Professeur (Rapporteur)
Université de Lyon

M. Patrick Comont Directeur innovation et PI (Invité)
Engie

M. Pierre Senellart Professeur (Examinateur)
École normale supérieure

Mme. Agnès Voisard Professeur (Rapporteur)
Université libre de Berlin

Laboratoire Spécification et Vérification
École normale supérieure Paris-Saclay, UMR 8643 du CNRS
61 avenue du Président Wilson, 94235 Cachan Cedex, France

A personal knowledge base
integrating user data and

activity timeline

David Montoya

Abstract
Typical Internet users today have their data scattered over several devices, ap-
plications, and services. Managing and controlling one’s data is increasingly
difficult. In this thesis, we adopt the viewpoint that the user should be given
the means to gather and integrate her data, under her full control. In that direc-
tion, we designed a system that integrates and enriches the data of a user from
multiple heterogeneous sources of personal information into an RDF knowledge
base. The system is open-source and implements a novel, extensible framework
that facilitates the integration of new data sources and the development of new
modules for deriving knowledge. We first show how user activity can be inferred
from smartphone sensor data. We introduce a time-based clustering algorithm to
extract stay points from location history data. Using data from additional mobile
phone sensors, geographic information from OpenStreetMap, and public trans-
portation schedules, we introduce a transportation mode recognition algorithm
to derive the different modes and routes taken by the user when traveling. The
algorithm derives the itinerary followed by the user by finding the most likely
sequence in a linear-chain conditional random field whose feature functions are
based on the output of a neural network. We also show how the system can
integrate information from the user’s email messages, calendars, address books,
social network services, and location history into a coherent whole. To do so, it
uses entity resolution to find the set of avatars used by each real-world contact
and performs spatiotemporal alignment to connect each stay point with the event
it corresponds to in the user’s calendar. Finally, we show that such a system
can also be used for multi-device and multi-system synchronization and allow
knowledge to be pushed to the sources. We present extensive experiments.

Une base de connaissance personnelle
intégrant les données d’un utilisateur
et une chronologie de ses activités

David Montoya

Résumé
Aujourd’hui, la plupart des internautes ont leurs données dispersées dans plusieurs
appareils, applications et services. La gestion et le contrôle de ses données sont
de plus en plus difficiles. Dans cette thèse, nous adoptons le point de vue selon
lequel l’utilisateur devrait se voir donner les moyens de récupérer et d’intégrer
ses données, sous son contrôle total. À ce titre, nous avons conçu un système
logiciel qui intègre et enrichit les données d’un utilisateur à partir de plusieurs
sources hétérogènes de données personnelles dans une base de connaissances
RDF. Le logiciel est libre, et son architecture innovante facilite l’intégration
de nouvelles sources de données et le développement de nouveaux modules
pour inférer de nouvelles connaissances. Nous montrons tout d’abord comment
l’activité de l’utilisateur peut être déduite des données des capteurs de son
téléphone intelligent. Nous présentons un algorithme pour retrouver les points
de séjour d’un utilisateur à partir de son historique de localisation. À l’aide
de ces données et de données provenant d’autres capteurs de son téléphone,
d’informations géographiques provenant d’OpenStreetMap, et des horaires de
transports en commun, nous présentons un algorithme de reconnaissance du
mode de transport capable de retrouver les différents modes et lignes empruntés
par un utilisateur lors de ses déplacements. L’algorithme reconnaît l’itinéraire
pris par l’utilisateur en retrouvant la séquence la plus probable dans un champ
aléatoire conditionnel dont les probabilités se basent sur la sortie d’un réseau de
neurones artificiels. Nous montrons également comment le système peut intégrer
les données du courrier électronique, des calendriers, des carnets d’adresses, des
réseaux sociaux et de l’historique de localisation de l’utilisateur dans un ensemble
cohérent. Pour ce faire, le système utilise un algorithme de résolution d’entité
pour retrouver l’ensemble des différents comptes utilisés par chaque contact de
l’utilisateur, et effectue un alignement spatio-temporel pour relier chaque point
de séjour à l’événement auquel il correspond dans le calendrier de l’utilisateur.
Enfin, nous montrons qu’un tel système peut également être employé pour faire
de la synchronisation multi-système/multi-appareil et pour pousser de nouvelles
connaissances vers les sources. Les résultats d’expériences approfondies sont
présentés.

iii

The base maps used in the majority of map figures in this thesis are
attributed to Carto (https://carto.com/attribution) and were built us-
ing OpenStreetMap data, which is licensed under the Open Data Commons
Open Database License by the OpenStreetMap Foundation (https://www.
openstreetmap.org/copyright). Where stated, the base map is attributed
to Google (https://www.google.com). The drawings of Alice in Figure 6.3 were
made by John Tenniel and are in the public domain. The icons used in this figure
are Font Awesome by Dave Gandy http://fontawesome.io, and licensed under
the SIL Open Font License (http://scripts.sil.org/OFL).

https://carto.com/attribution
https://www.openstreetmap.org/copyright
https://www.openstreetmap.org/copyright
https://www.google.com
http://fontawesome.io
http://scripts.sil.org/OFL

Contents

List of Figures vii

List of Tables ix

Acknowledgments xi

Introduction 1

1 Personal information management 5
1.1 What is personal information? . 6
1.2 How much information is personal? 8
1.3 Issues with personal information 11
1.4 What is personal information management? 14
1.5 Conclusion . 20

2 Personal knowledge 23
2.1 The nature of personal knowledge 23
2.2 A model for personal knowledge representation 25
2.3 Goals of this thesis . 31
2.4 Conclusion . 39

3 From data to personal knowledge 41
3.1 Email messages . 41
3.2 Address books . 43
3.3 Calendars . 45
3.4 Social networking services . 48
3.5 Mobile device sensors . 52
3.6 Related work . 59

4 Spatiotemporal knowledge: Stay extraction 63
4.1 Introduction . 63
4.2 Location history . 64
4.3 Thyme, the stay extraction algorithm 68
4.4 Evaluation . 71
4.5 Related work . 73
4.6 Conclusion . 75

v

vi Contents

5 Spatiotemporal knowledge: Itinerary recognition 77
5.1 Introduction . 77
5.2 Transportation networks . 79
5.3 Public transportation routes and schedules 85
5.4 Mobile sensor observations . 88
5.5 Itinerary recognition . 90
5.6 Movup’s itinerary recognition algorithm 92
5.7 Evaluation . 101
5.8 Related work . 107
5.9 Conclusion . 110

6 Personal knowledge integration 113
6.1 Introduction . 113
6.2 The system . 115
6.3 Enrichers . 122
6.4 Experiments . 125
6.5 Use cases . 132
6.6 Related work . 136
6.7 Conclusion . 139

Conclusion 141

Self-references 145

Other references 147

List of Figures

2.1 The personal knowledge ontology 28

3.1 An email message sent by Alice 43
3.2 Figure 3.1’s email message represented in the personal knowledge

ontology . 44
3.3 Alice’s own contact information in vCard format 46
3.4 Alice’s own contact information represented in the personal knowl-

edge ontology . 47
3.5 Alice’s calendar in iCalendar format 48
3.6 Alice’s calendar represented in the personal knowledge ontology . 49
3.7 A Facebook event represented in the personal knowledge ontology 51
3.8 Thymeflow mobile possible states 56
3.9 The configuration panel of Thymeflow mobile 57
3.10 The main panel of Hup-me mobile 60
3.11 Sensor measurement metrics in Hup-me mobile 61
3.12 The configuration panel of Hup-me mobile 62

4.1 Points in Alice’s location history for a particular day 65
4.2 Spatial clusters detected in Alice’s location history for a particular

day . 66
4.3 A detailed view of two spatial clusters in Alice’s location history . 67
4.4 Point accuracies in Alice’s location history for a particular day . . 68
4.5 The stays extracted by Thyme from Alice’s location history for a

particular day . 70
4.6 The stays extracted by Thyme from Alice’s location history during

a period when Alice had left her tablet at her workplace while she
traveled abroad . 72

4.7 Thyme versus Google Timeline for a day in Bob’s location history 74

5.1 Geodesics and trails . 80
5.2 A spatial network example (G0) 81
5.3 A point and its projection on the spatial network G0 83
5.4 A graph representing the admissible moves of the trip pattern from

Example 5.3.1 . 86
5.5 The trellis built during the matching of a trip pattern to some

transportation network path . 88
5.6 Overview of Movup’s algorithm 93

vii

viii List of Figures

5.7 Movup’s annotation interface displaying the user’s speed over
time as measured by location sensors and features extracted from
accelerometer data . 102

5.8 Movup’s annotation interface displaying the user’s location se-
quence on a map . 103

5.9 Movup’s annotation interface displaying the output of Google’s
activity recognition as well as Wi-Fi and Bluetooth features . . . 104

5.10 Movup’s annotation interface displaying radio-based technology
contextual features . 105

5.11 Matching a train and a metro trip pattern to two paths in the rail
transportation networks created from OpenStreetMap data 106

5.12 The distribution of the ratios of matched paths’ lengths to the sum
of geographical distances between consecutive stops of different
trip patterns . 107

5.13 The result of matching a trip pattern belonging to the Paris
metropolitan to a path in the metro transportation network. . . . 108

5.14 The execution time of Hup-me with respect to the duration of the
journey . 109

6.1 The system architecture of Thymeflow 117
6.2 The web user interface of Thymeflow for configuring new sources . 117
6.3 A view of Alice’s own agent entity in Thymeflow’s contact component 121
6.4 Distribution of Agent equivalence classes by number of distinct

email addresses for matchings generated on Barack’s dataset by
IdMatch and the best run of AgentMatch 128

6.5 Precision-recall curves of AgentMatch and PARIS on Barack’s
dataset for different thresholds . 129

6.6 Precision-recall curves of matching stays with events for different
overlap duration ratio thresholds on Angela’s and Barack’s datasets 130

6.7 Precision-recall curves of matching stays with events for different
filtering distances on Angela’s and Barack’s datasets 130

6.8 A query to retrieve the telephone numbers of the attendees of some
Facebook event . 132

6.9 A query to display on a map the places visited during some event 133
6.10 A query to list the most recent messages sent by a participant of a

group of events . 134
6.11 A query to list the contacts to which Alice sends the most email

messages . 135
6.12 A graph visualization of the events and their attendees in Alice’s

knowledge base . 136
6.13 A query that adds to each contact in Alice’s Google account the

email addresses found on matched agents 137

List of Tables

4.1 Stay extraction evaluation on Bob’s dataset 73

5.1 Characteristics of radio-based technology contextual features . . . 90
5.2 The confusion matrix of Hup-me for the recognition of different

transportation modes . 104
5.3 Hup-me’s public transportation route recognition performance . . 105

6.1 The loading performance of Angela’s dataset into Thymeflow’s
knowledge base . 126

6.2 Precision and recall of different agent matching algorithms on
Barack’s dataset . 128

6.3 Evaluation results for different geocoding techniques 131

ix

Acknowledgments

The works that are presented in this thesis have been funded by Sinovia,
a French company and an entity of the Engie Ineo group. They are
the object of a joint research agreement between Sinovia and Inria1,
a French public research institution, that allows Sinovia to employ a
Ph.D. candidate.

Throughout my doctoral studies and in the realization of this thesis, I have
met, discussed with, worked with, been advised by, and benefited from the support
of multiple individuals. I would like to acknowledge them here.

First, I would like to express my sincere gratitude toward Serge Abiteboul,
my principal advisor. Despite his busy schedule, Serge remained available and
committed to my progress. In this respect, I appreciated how he gave me the
freedom to shape my work as I saw fit while giving me the necessary guidance to
stay focused on attainable research objectives. While working with him, I appre-
ciated both his frankness and humbleness and learned a lot from his pragmatic
and goal-oriented approach to research. Serge’s experience and optimism helped
me gain confidence and give structure to my work. Above all, I am grateful
to Serge for teaching and reminding me the value and importance of simple
theories, precise definitions, and out-of-the-box thinking in research. Second, I
would like to thank Pierre Senellart, my co-advisor, for his thoughtful insight
and especially his direct involvement in some of the experiments described in this
thesis. Pierre’s high standards with respect to both form and content as well as
helpful questions and suggestions allowed me to improve my work considerably. I
greatly appreciated the authentic enthusiasm that Pierre expressed toward my
work. Third, I would like to thank Franck Signorile, who was my supervisor
at Sinovia, for his support and encouragements. Franck kept me at a balanced
distance from Sinovia’s business-oriented activities; he usually called me in only if
he deemed that my help was essential and valuable, thus allowing me to acquire
important industry experience while giving me the necessary time to work on
my doctoral research. I am grateful to Serge, Pierre, and Franck for trusting me
through this journey. Finally, I would like to thank the members of my jury, and
especially Angela Bonifati and Agnès Voisard, for taking the time to review this
thesis and for their helpful suggestions.

This thesis would not have been possible without Sinovia’s agreement with
Inria. I would like to thank Carlos Moreno, who was Engie Ineo’s chief scientific

1The agreement is based on a French framework called convention industrielle de formation
et recherche en entreprise (Cifre).

xi

xii Acknowledgments

advisor, for helping us set up this agreement. I would also like to thank Edwige
Brossard and Thomas Peaucelle, Sinovia’s former managing directors, for ensuring
the proper realization of Sinovia’s collaboration with Inria.

Some of the works presented in this thesis have resulted from collaborations
with other researchers. In developing Thymeflow, I had the opportunity to work
with Fabian M. Suchanek from Télécom ParisTech and Thomas Pellissier Tanon
from École normale supérieure de Lyon. Thomas spent about six months in
our Inria research group and contributed significantly to the development of
Thymeflow. During the preliminary investigations that led to the development
of Movup, Jakub Kallas from École normale supérieure Paris-Saclay spent some
time in our research group and participated in these investigations. Finally, I am
very grateful to the many anonymous participants that provided us with some of
their data for research purposes.

During my time at the Laboratoire Spécification Vérification (LSV) as well
as Télécom ParisTech, I had fruitful discussions with fellow Ph.D. candidates
and postdoctoral researchers: Karima Rafes, Simon Theissing, Antoine Amarilli,
Luis Galárraga, and Roxana Horincar. I am thankful to Thida Iem, Luc Segoufin,
Stéphanie Delaune, Stéphane Demri, and Laurent Fribourg for ensuring that my
stay at the laboratory was pleasant.

Special mentions go to the rest of my colleagues at Sinovia. In particular,
I would like to thank Romain Castillos, Manuel Odesser, Jérôme Bonnet, and
especially Dominique Tran, François Camus, Stéphane Michaud, and Erwan
Becquet for their contributions to the development of Thymeflow. I am very
grateful to Steve Sampson for his important contribution to the development of
Movup. I am grateful to Ilinca Vanneste, Manuel Odesser, Erwan Becquet, and
especially Lucas Griffaton-Sonnet for contributing to the discussion about the
business cases of personal information management systems. I would also like to
thank Omar Fantazi, Bouthie Dramé, Mahamadou Koné, Paul-Henri Richard,
Armand Abedin, and Alejandro Mejía for their support.

Many thanks to some of the computer science students at the École normale
supérieure Paris-Saclay, namely Martin Gleize, Raphaël Bonaque, Nicolas Rolin,
Alban Levy, Charles-Pierre Astolfi, and Émile Contal, with whom I had the
opportunity to discuss some of the topics presented in this thesis.

Finally, I would like to express my gratitude toward my family. My elder
brothers for their support during my studies in France. My parents for introducing
me to science at a very young age, encouraging me to pursue a Ph.D. degree, and
their unconditional support through all these years. My parents created Ceprecyt,
a science academy for young people, in which I explored and learned about the
natural world and technology by doing fun experiments and building different
kinds of fascinating things. Undeniably, this experience ignited my curiosity and
developed my taste toward science. Last but not least, I am deeply grateful to
my wife for her constant belief in me and her invaluable support.

Introduction

Typical Internet users today have their data spread over several devices, ap-
plications, and services. They encounter more and more difficulties managing
these data and are losing control over them. In this thesis, we take the point of
view of Abiteboul, André, and Kaplan (2015), which argues that the solution
to this problem is that users should manage their information by themselves,
in their best interest, in a personal information management system. In that
direction, we introduce important components for such a system. More precisely,
we introduce tools to integrate multiple heterogeneous sources into a single knowl-
edge base by pulling data from the sources, reconciling references to the same
entities, and inferring a timeline of user activity. Although users today lack the
necessary knowledge to manage their data on their own, this is a first step toward
empowering them to do so.

The information of typical Internet users includes the messages they send,
pictures they publish, events they are invited to, products they buy, web pages
they visit, and places they go to. Furthermore, a large amount of data that
concerns a user is generated and/or managed by other parties: friends’ pictures,
messages from colleagues, credit card transactions, telephone bills. Applications
are developed by distinct entities and fitted to different purposes.

Typical users are unable to take full advantage of their data. First, they are
not able to list the systems that host their data, nor globally search across these
systems to find information. Second, answering questions or performing tasks
requiring user information from multiple systems is hard: “how much did I spend
during my last holiday trip?” “tell all my guests that the rendezvous place has
changed”, and “how many times did I go to a restaurant this year?” These issues
limit the ability of users to exert control over their data and hinder the creation
of value in a world where information is paramount.

The reason of this limitation is the lack of global integration across the different
devices, applications, and services that host knowledge that is useful to the user.
Usually, when a new application is developed, or a new kind of data is stored,
a new silo is created. It may be because the stored data is not retrievable, is
only partially retrievable, or retrievable in an unusable format. The purported
reasons may be technical, or even legal, but mostly economical as integration does
not come for free and requires that companies relinquish part of the economic
advantage of holding users’ data. Some companies, such as Google, Microsoft,
and Apple, alleviate this problem by offering their users the ability to put all their
data in a single platform, built as a coherent suite of online services. However, free
market competitiveness and the users’ desire not to depend on a single company

1

2 Introduction

are serious issues with such a solution. Some services have started providing
mechanical ways for retrieving data (e.g., through public APIs) and integrating
them as part of their value proposition. However, someone still has to be in
charge of managing all the users’ information and making it globally available.
In this thesis, we adopt the viewpoint that the user should be given the means to
gather and integrate her data, under her full control, thereby resulting in more
symmetry between users and service providers.

We first show how the user’s location history on her mobile phone can be
used to derive knowledge about the user’s whereabouts. For instance, this will
allow finding out which places she spends the most time in, which modes of
transportation she takes most often, etc. These exemplify the tasks of inferring
knowledge from available information and performing personal analytics.

Second, we show how to integrate the users’ data into a personal knowledge
base. These tasks are implemented in a system that we designed that leverages
the different sources of user information by integrating them into a single model
and facilitating new enrichments. The system’s goal is personal knowledge
integration. We show some examples of queries that the system can answer and
its potential uses, such as multi-device and multi-system synchronization and
pushing knowledge to the sources.

Our main contributions are as follows:

• A novel method for extracting the places that the user visited from her
location history. It performs time-based clustering to process the locations
in sequence, handling satellite, Wi-Fi, and cellular positioning data as well
as the reported accuracy of each location.

• A transportation mode recognition algorithm that infers a detailed de-
scription of a user’s journey, including public transportation routes, stops,
and transfers from one mode to another. It uses data from the location,
accelerometer, and Bluetooth sensors in a mobile device (smartphone),
geographic information from OpenStreetMap, and transportation schedules
published by local agencies in GTFS format. The algorithm infers the
itinerary followed by the user by determining the most likely state sequence
in a linear-chain conditional random field whose feature functions are based
on the output of a feedforward neural network.

• An open-source system that integrates multiple heterogeneous sources of
user information, including the user’s calendar and location history, into a
personal knowledge base. This is a web application that the user installs on
her machine. She provides it with credentials to connect to different sources;
then the system pulls data in and runs several algorithms to derive new
knowledge. These include an entity resolution algorithm that reconciles the
different avatars that a contact has and an alignment between events and
the user’s location history. Knowledge is stored in RDF using an ontology
based on schema.org. Finally, the user can query the knowledge base via
a SPARQL endpoint, and visualize the results in a table, in a map, or as a
graph.

3

• An extensible framework that facilitates the integration of new data sources,
such as web search or personal finance, and the development of new modules
for deriving knowledge. To add a new kind of data source, a module that
converts source data into RDF statements has to be implemented. To derive
new kinds of knowledge, a routine that takes a delta of the knowledge base
has to be implemented.

The outline of this thesis is as follows:
In Chapter 1, we define personal information in the context of an individual,

and describe where it can come from. We then present issues users face when
handling their information, present our vision of personal information management,
and discuss how it helps in dealing with these issues. The chapter concludes with
a review of the state of the art in the context of personal information management.

Chapter 2 presents a model for personal knowledge. First, we define personal
knowledge by describing its nature and the different aspects that we intend
to capture. Then, we specify an RDFS ontology for representing the different
concepts and their relations. Finally, we present in detail some of the goals
addressed by this thesis.

Chapter 3 presents the different sources of personal information specifically
used in this thesis. For each source, we describe the significance of the information
it provides and how acquisition can be performed, i.e., the technologies involved
and the issues in accessing information. In particular, we present the two
applications we developed for acquiring mobile device sensor data. The chapter
concludes with related work in the domains of data extraction and transformation.

Chapter 4 presents our work on extracting stays from the user’s location
history. First, we define the problem and illustrate it through visualizations of a
location history. Then, we describe Thyme, an algorithm we developed to solve
this problem. Finally, we present an evaluation of this algorithm and some related
work.

Chapter 5 presents our work on inferring the transportation mode and routes
used by the user using mobile device sensor data, geographic information from
OpenStreetMap, and public transportation schedules. We introduce Movup, a
system and an algorithm that we designed and implemented to perform itinerary
recognition. Then, we describe the different sources of information it uses, how it
acquires them and preprocesses the data. After that, the algorithm is described
and we present the evaluation we performed. Finally, we review some related
work.

Chapter 6 presents Thymeflow, the system that we designed in an attempt to
fulfill our vision of a personal information management system. We describe the
specific problems it addresses and its overall architecture. Then, we specify the
different knowledge integration and enrichment routines implemented within the
system, and report on their evaluation. Finally, we give examples of queries and
potential uses, and review some related work in this domain.

Finally, we conclude this thesis by outlining some lessons learned through our
research and suggesting directions for future work.

Chapter 1

Personal information
management

Information is fundamental to every human organization. In business, access to
accurate, reliable, and timely information is a factor in competitive advantage.
Since the beginning of recorded history, human settlements have kept track of
productivity metrics of their various activities, for the collection of tax for instance,
or for making informed decisions (Schmandt-Besserat 1996). The recognition of
science and technology as a driver of increasing efficiency and progress has also
meant that organizations making the most out of past experience, through the
careful consolidation of best practices and strategic information sharing, would
tend to lead in their respective fields (Porter and Millar 1985; Argote and Ingram
2000).

Today’s Information Age is characterized by exponential trends in the velocity
of information transmission, the capacity of information storage, and computa-
tional power. Such trends have transformed the traditional way organizations
manage information and increased the speed at which information is generated:
file cabinets have become data centers, and increasing automation and computer
assistance have increased the opportunities for data collection.

Such transformations have brought about new challenges for large organi-
zations. The increase in volume, velocity, but also variety of information has
rendered traditional data processing tools inefficient, while at the same time
creating new business opportunities for those making the most out of this new
information. This has been the challenge of “big data”.

In parallel, individuals have faced new difficulties. The digitalization of one’s
calendar, address book, and communications (email, SMS) have made it more
convenient for individuals to keep more and more information in digital form,
instead of paper form or their memory, thanks to the success and ubiquity of
search in modern applications. Computers can now function as an extension of
one’s memory. However, this convenience have come at great costs. One’s address
book is no longer kept safe within paper sheets in one’s pocket. Its contents are
now replicated in multiple machines, in the “cloud”, where others (e.g., system
administrators, the government, or hackers) could technically have access to it.
Meanwhile, individuals also face their own version of “big data”. In fact, if we

5

6 Chapter 1. Personal information management

consider individuals solely responsible for managing their own information and
the only ones capable of doing so to the best of their interests, we realize that
volume, velocity, and variety are also problematic to the individual, but at a much
smaller scale, that is, at the scale of the individual. Individuals do not have the
knowledge and resources to manage their own information, in their best interest.

In this chapter, we define what is the information of concern to an individual
(one’s personal information) and where it comes from. Finally, we discuss some
challenges related to personal information and ways they can be tackled through
personal information management.

1.1 What is personal information?
We view personal information as a particular kind of information. In information
science, one can see information as an interpretation of data, which are the
lowest kind of stimuli by which machines communicate with us and which each
other. Informally, we define an individual’s personal information as the set of all
information that is linked to this individual in some way.

Our informal definition is similar to the notions of “personally identifiable
information” and “personal data” respectively used in the privacy protection
laws of the United States (93rd United States Congress 1974) and the European
Union (European Parliament and Council 1995), but differ in context. Personally
identifiable information (or personal data) is understood in the context of the
information that an agency (e.g., an organization, a company) holds as:

any information about an individual maintained by an agency, in-
cluding (1) any information that can be used to distinguish or trace
an individual’s identity, such as name, Social Security number, date
and place of birth, mother’s maiden name, or biometric records; and
(2) any other information that is linked or linkable to an individual,
such as medical, educational, financial, and employment information.
(Koontz 2008)

Instead, our definition understands the personal information of an individual
in the context of all of the world’s information. It includes all information that,
given access to all systems and data stores in the world, could reasonably be
inferred as being linked in some way to this individual.

In the following, we describe more precisely the notion of information and what
is meant by “linked in some way”. Also, personal information shall hereinafter be
understood from the perspective of a particular fictitious individual, Alice, our
prototypical owner of personal information.

From information to knowledge
We understand data as the sequences of symbols stored, generated, and used by
machines for keeping memory and communicating. In the context of the data,
information, knowledge, and wisdom hierarchy (the DIKW hierarchy), information

1.1. What is personal information? 7

is data that has meaning or purpose (Rowley 2007). For instance, an email message
file is data when seen as a sequence of bits or characters, information are the
contents of this message: from which address was it from? when was it sent? and
what is the subject? Similarly, the sequence of GPS navigation messages picked
up by Alice’s smartphone are data, information are the geographic coordinates
and time representing Alice’s location. Such information is useful to the machine.
The machine can use the information contained in an email message to provide
a default reply-to address and reply subject, and add part of the body of the
original message to the response. Geographic coordinates, on the other hand,
can be used to center the map on Alice’s current location when she requests for
directions, which is a convenient feature.

This level of machine interpretation is not enough. A feature recently intro-
duced by a popular email client suggests Alice three different possible responses
to an email message based on its contents (Miklós 2015), saving her precious time
10 percent of the time (Moynihan 2016). To suggest appropriate responses, the
machine might need to know the relationship that she has with the addressee:
is it a business client or a close friend? The topic of the message might also
be useful for inferring relevant Cc: addressees to add to the response: Alice’s
companion, her boss, etc. Her location, recorded over time using the GPS of her
smartphone, becomes really useful when seen as a history of places she has been
to: the supermarket, restaurants, the gym, work, home, etc. The machine could
use such information to suggest possible meeting places for future appointments:
how about meeting this particular fish restaurant that is near “Alice’s workplace”
for the “Lunch with Bob” event? Following the terminology of the DIKW hi-
erarchy, we use the term personal knowledge to refer to personal information
interpretable by a machine in such way. In simple terms, personal knowledge
is a machine representation and interpretation of personal information using a
structure and semantics that are more closely related to the tasks Alice wants to
perform. For instance, such an interpretation could turn the list of contacts on
Alice’s smartphone into a coherent list of people she relates to: without duplicates,
annotated with the kind relationship she has with them and the different ways
she communicates or interacts with them (e.g., telephone calls, email or text
messaging, or face-to-face communication).

In which ways can information be personal?
As mentioned earlier, Alice’s personal information is information linked in one
way or another to herself. One could argue that all information in the world is
connected to her, assuming the small-world thesis that each one of us is at most
six “steps” away from everything else in the world. However, we would like to
retain only as personal, information that is linked to her “in one step”, in a way
that provides useful information for or about her activities and needs. To this
extent, Jones (2010) defines several ways in which information can be personal,
in a one-step connection:

1. Controlled by Alice: email messages in her email accounts, files in her
computer’s drive, contact information in her address book.

8 Chapter 1. Personal information management

2. About her: credit, medical, web browsing histories.

3. Directed toward her: phone calls, email messages.

4. Sent by her: email messages, published articles, pictures posted on social
networks.

5. Experienced by her: books she has read, web pages she has browsed, places
she has visited.

6. Relevant to her: the perfect movie to watch tonight, her next holiday
destination.

The classes above are non-exclusive. Together, they capture all kinds of personal
information discussed in this thesis.

1.2 How much information is personal?
Personal information, as defined in the previous section, spans a wide range of
domains. Information technology is now being used in most human activities as
either a production or support tool, and with more than 6.4 billion devices now
connected to the Internet (Gartner 2015), the amount of data generated every day
totals 2.5 quintillion bytes (IBM 2016). What amount of it is personal? At first
glance, information such as satellite imagery, air quality sensor measurements,
and surveillance camera footage would appear to be non personal. Nevertheless,
the satellite images of a city and information about its air quality could be useful
to and used by at least some of its inhabitants, and surveillance camera footage
is used by a security guard or police officer when an incident occurs. Overall,
any information that is produced as part of a process or an activity involving
human monitoring or intervention could at least end up being experienced by
some individual. Thus, aside from information produced, exchanged, and used by
machine controlled processes with neither a human interface nor log keeping for
possible future human analysis, a good amount of information is personal to at
least one individual.

In this thesis, we focus on a representation of personal information that cap-
tures many activities concerning many individuals, and avoid delving into overly
particular cases, such as information generated by Alice’s specific occupation.
Next, given this context, we discuss how information about Alice is produced,
and where personal information is stored.

How is information about an individual produced?
Information about Alice is produced either actively or passively. For instance,
Alice actively sends email messages, buys books online, posts pictures on social
media, performs web search queries, calls friends, and fills tax declarations. At the
same time, passively, email servers record the IP address of her email client, the
online book retailer builds a profile of her reading taste, the search engine builds a

1.2. How much information is personal? 9

history of her queries, the telecommunications operator builds a metadata record
of her calls, and the state’s online tax service computes the probability that she
may be committing tax evasion. Passively also, for instance, connected devices
that Alice owns record her location, heart rate, and the temperature at home.
Sometimes, this is done by devices that she does not own: surveillance cameras
record images of her walking outdoors, and the local transportation agency logs
the times and places where she uses her transit pass (a smart card) to enter or
leave the network.

The distinction between active and passive production of personal information
is helpful in that it highlights that in many human activities in which a machine
is directly or indirectly involved, information is generated not only for the proper
fulfillment of this activity (e.g., invoice generation when the user orders a book
online), but also for other purposes, possibly serving different interests (e.g.,
building a profile of the user’s reading preferences for recommending books to
her). Depending on the interests served, some of this information might be readily
available to Alice (e.g., her email messages), or nearly impossible to obtain (e.g.,
an image of her taken by surveillance camera).

Where is personal information stored?
Personal information can be found practically everywhere. The storage location
of personal information depends on who should be able to access it, what it
is used for, and whose interests it responds to. Let us enumerate the different
locations where Alice’s information may reside:

Personal computer Alice has a desktop computer at home and uses a laptop
for work. These computers hold all kinds of documents and media that
Alice views, edits and organizes. On each computer, she has installed an
email client that constantly synchronizes email messages in her inbox from
a remote server. She downloads documents and media that she finds on the
Web, or that other people have shared with her. She also has installed a file
synchronization client (e.g., Dropbox, Google Drive, or Microsoft OneDrive)
that constantly synchronizes documents and photos on her computer with a
server in the “cloud”, so that she can share them with friends or colleagues.

Private servers Alice owns a home server, but she has also acquired a private
server that is provided by an Internet hosting service. On her home server,
she has installed a file sharing system that functions as network-attached
storage for home devices. On the remove private server, she hosts an email
server for her family. The modem provided by her Internet service provider
also comes with basic network-attached storage functionalities.

Connected devices Alice owns all kinds of connected devices. She carries a
smartphone and a smartwatch with her all the time, which keep a log of
her activity and location over time. Home automation devices, as well as
mobile appliances such as connected cars, are not only capable of delivering
their principal function, e.g., home surveillance, smart heating, or mobility.

10 Chapter 1. Personal information management

They also serve as sensors capable of gathering richer information that is
relevant to Alice: the times when the members of her family were at home,
how comfortable is it to live in it, or how much time she spends commuting
per week. Recent measurement data may be stored up to some extent on
each of these devices, the rest is uploaded for archival purposes or further
analysis to a private server or to the “cloud”. Her smartphone and her
tablet also function as ultra mobile alternatives to her personal computer:
they are equipped with a web browser, a calendar application, a contact
manager, an email client, and are able to hold substantial document and
media content. Aside from information that is also present in her personal
computer, Alice can use these devices to take pictures and record videos
and store them, and her smartphone keeps a record of her text messages
and metadata about her phone calls.

Organizational servers The company where Alice works at provides email,
calendar, file, and directory services, which are hosted on-premises, to all
of its employees and associates. These services contain information about
Alice, her work, and the people she works with.

The Cloud Web-based email services (webmail), search engines, social network-
ing services, communication platforms, video hosting services, as well as
e-commerce, e-banking, and e-government services provide many facilities
that Alice interacts with. Through this interaction, Alice’s personal infor-
mation is collected and ends up being stored, temporarily or permanently,
in what we refer to as the Cloud.

Protected/Offline servers Transportation agencies, shops, local government
agencies keep information about Alice in their people and client databases,
which she cannot interact with.

Here are some figures. The average Internet user (ages 16-64) owns 3.64
connected devices (including personal computers) (Buckle 2016). She owns 5.54
social media accounts (Mander 2015). In a different sample of Internet users, the
number of online accounts a user has on average was estimated at 90 (Le Bras 2015).
In another study, it was estimated that the average employee of a small or medium-
size business uses 5.5 applications provided by the organization (Intermedia 2014).
While we do not have statistics on the number of private servers owned by the
typical Internet user, we believe that as of now not many users have one, as
they tend to require system administration knowledge to install and maintain.
However, we believe that the trend is on the rise, as the cost of hosting and
maintaining a private server is driven down by more efficient virtualization and
more powerful deployment tools, and offers by Internet and television service
providers increasingly diversify to include cloud-like services hosted at home using
a set-top box.

1.3. Issues with personal information 11

1.3 Issues with personal information
The use of personal information, while bringing a lot of convenience and features
(e.g., quickly finding the telephone number of a friend) and enhancing Alice’s own
capabilities through information technology, does not come without issues.

Information overload
Information overload refers to the difficulty in understanding and making good
decisions caused by the exposure to too much information. Speier, Valacich, and
Vessey (1999) concluded, based on prior research, that:

Information overload occurs when the amount of input to a system ex-
ceeds its processing capacity [. . .]. Decision makers have fairly limited
cognitive processing capacity [. . .]. Consequently, when information
overload occurs, it is likely that a reduction in decision quality will
occur. Research from a number of disciplines (e.g., accounting, finance,
consumer behavior) has found, for example, that information overload
decreases decision quality [. . .], increases the time required to make a
decision, and increases confusion regarding the decision [. . .].

In the context of a single individual, it is not new that personal information
(the input) exceeds the processing capacity of the system (the individual). It
was reported that the average U.S. person spent 12 hours of leisure time per day
consuming 100,500 words and 34 gigabytes (Bohn and Short 2009). This includes
information consumed through mobile phones, the Internet, email, television,
radio, newspapers, books, etc. This accounts for experienced personal information.
To put it into perspective, the average white collar U.S. worker spends 6 hours a
day checking email (Naragon 2015). The term email overload has been used to
refer to the fact that many individuals use email well beyond its original purpose
of asynchronous communication (they use it also for task management, scheduling,
and archiving), and to the feeling of disorganization associated with high unread
message counts (Whittaker and Sidner 1996; Fisher et al. 2006; Grevet et al.
2014). Overall, not all of the information that Alice consumes is precisely relevant
nor useful to her. However, the low signal-to-noise ratio caused by an overload of
not-so-useful information means that useful information becomes less accessible
and this hinders her ability to make good decisions. Another problem with
personal information is that the definition of usefulness depends on the user
and this is not initially clear to the machines that process them. For instance,
some information that reaches the user is the result of contradictory interests:
marketers are sometimes forced to reach wide audiences when advertising their
products, which includes uninterested consumers, yet consumers want to know
about deals for products they might be interested in.

Loss of functionalities due to fragmentation
A natural problem caused by the variety of sources and storage locations of
personal information is fragmentation. Fragmentation is the phenomenon by

12 Chapter 1. Personal information management

which personal information of a single individual is scattered throughout multiple
information systems and storage devices, and access to them, by computing agents
or the individual, cannot be performed, uniformly and efficiently, from a single
point. Before the Information Age, fragmentation occurred each time information
migrated away from the human brain, to be stored for instance in notebooks,
files, or paper calendars, as the notes would typically find themselves scattered
at home or throughout the office. A smartphone now offers the possibility of
having these notes in one location, within arm’s reach. However, inherently social
information, i.e., information that is personal to multiple individuals, is naturally
fragmented. From the moment an individual is born, social information about the
individual exists: civil records, birth medical records, baby pictures on the fridge,
baby congratulations cards from the friends and colleagues of the parents. Also,
the generation, management, and representation of information is fragmented by
the fact that applications are developed by distinct entities and fitted for different
purposes. But why is fragmentation a problem?

To answer this question, we distinguish two kinds of fragmentation: storage
fragmentation and access fragmentation. Storage fragmentation means that no
single computing agent is able to retrieve all of Alice’s information without
communicating with other agents. Storage fragmentation is a problem when
the cost of communication (i.e., in terms of bandwidth and latency) is relatively
high with respect to the performed task. Differently, access fragmentation means
that no single computing agent is able to retrieve all of Alice’s information in
an interoperable fashion, in a unified representation, and for use in a single
coherent task. Certain tasks become harder or even impossible to perform. For
instance, consider WhatsApp (WhatsApp Inc. 2017), an instant messaging service
for smartphones used by one billion people each month (WhatsApp Inc. 2016).
Although WhatsApp stores all received and sent messages in Alice’s smartphone,
Alice is unable to search across the different types of messages (email, SMS,
MMS, and WhatsApp) stored in her smartphone from a single interface. The
reason: WhatsApp does not provide a programmatic way of reading or searching
messages. WhatsApp, works as an information silo, incapable of handing over the
information acquired or generated by Alice while using it. Storage fragmentation
is a problem for efficiency, access fragmentation is a problem for functionality.
The latter prevents Alice from performing certain tasks in which we need to query
information from multiple sources. Functionally speaking, access fragmentation is
thus the most problematic. Due to this fragmentation, Alice cannot for instance
globally search within her personal information, and lacks a complete overview of
what information she has, and where it is.

Loss of control: sharing & privacy

As mentioned previously, fragmentation is in part responsible for Alice’s lack
of a complete overview of her information. One result is that, in a lot of cases,
she does not entirely control her personal information, who she shares or does
not share it with, and what people do with it. Imagine, for instance, that Alice
uploaded a photo album to her favorite social networking site. On the one hand,

1.3. Issues with personal information 13

she might want to share it with a friend who unfortunately does not have an
account on this site, and not be able to do so. On the other hand, she might
want to only share it with certain friends, and only be able to share it with
her whole network. But even if Alice was allowed fine-grained control of who
can see her album, she might not be able to prevent her friends from sharing
it with other people as well. Her ability to control the dissemination of her
personal information is limited. This problem is not new to the Information
Age. However, the ease by which digital information can be searched for, copied,
shared, and reshared with today’s technology exacerbates it. This was alleviated
by the development of new mechanisms by which Alice can exert control over
the dissemination of personal information, such as the “right to be forgotten”
advocated by the European Union (European Parliament and Council 2016). By
this right, Alice can request a search engine to remove the URL of a page that
talks about her from its search results. Nevertheless, this right has limitations and
it only allows her to restrain the further dissemination of a piece of information
that has already been disclosed.

A related concern is the protection of personal information against misuse,
e.g., including fraud or identity theft. According to Gemalto (2016), the theft of
non-financial personally identifiable information has been of increasing interest
to hackers, and has recently superseded the theft of financial data as the leading
type of data breach, with 64% out of the 974 breaches reported in the first half
of 2016 being associated with identity theft. At the same time, recent disclosures
of mass global surveillance programs involving large Internet companies that
manage personal information of millions of users (Greenwald 2013; Gellman and
Poitras 2013) has decreased the relative trust people had on their services and
increased the importance of data control and security in organizations. Advocates
of such programs argue that the privacy of users that have “nothing to hide” is not
threaten by surveillance. However, Solove (2007) has criticized this argument as
relying on the assumption “that privacy is about hiding bad things”, which they
argue is problematic assumption since it leads to an “unproductive discussion of
information people would likely want or not want to hide”. On a related note, some
companies, known as “information brokers”, specialize in the trading of personal
information, which they collect from various sources and sell to other parties
without the knowledge nor the consent of the concerned individuals (Office of
Oversight and Investigations Majority Staff 2013). Can better control of personal
information help improve security and privacy?

Control of personal information has been recognized as an essential compo-
nent of privacy (Solove 2008). Paradoxically, privacy concerned Internet users
sometimes engage in behaviors that are not consistent with their concerns (Barnes
2006; Dienlin and Trepte 2015). While the reasons behind these behaviors remain
unclear, we believe that having a better overview of one’s personal information,
knowing what it contains, where it resides, and who might have it, is instrumental
to improving the information security and privacy of individuals. The availability
of such an overview may even lead to the development of tools that raise Internet
users’ awareness of these problems, by providing them insight on the particular
risks they are exposed to.

14 Chapter 1. Personal information management

Loss of freedom: vendor lock-in
Vendor lock-in is a practice that makes Alice dependent on a single vendor for
products and services. Alice is not able to switch to another vendor without
incurring substantial costs. In the context of personal information, vendor lock-in
limits Alice’s ability to have at her disposal, at any time, and in an interoperable
format, all of the personal information about her contained in the products
and services of the vendor. While vendor lock-in has mainly economic reasons,
Alice’s inability to export her information can also be a side-effect of the vendor’s
enforcement of strict privacy policies or laws and technical limitations of certain
features. Depending on the amount and the kind of information that the vendor
holds about her, she could be tempted to switch vendors without migrating her
data. However, some vendors, such as Google, Microsoft, and Apple, provide a
comprehensive suite of services and products coherently integrated with each other
in a single platform. While this provides a partial relief to personal information
fragmentation, it also encourages Alice to put most of her information in one
platform, making the switch much less tempting.

1.4 What is personal information management?
We can view personal information management (PIM) as the set activities con-
cerned with the cycle of personal information: the acquisition of personal infor-
mation from one or more sources, the protection and the distribution of that
information to those who need it and should have access to it, and finally their
archival or deletion. This definition is borrowed from the more general concept
of information management, which concerns the cycle of organizational activity.
The relations between information management, data management, and knowl-
edge management are analogous to the relations between data, information, and
knowledge in terms of the DIKW hierarchy (Venkatraman 1994). While organiza-
tions have always been interested in improving their efficiency, productivity, and
decision making through better information management, individuals are also
genuinely concerned, although at their own scale.

Jones (2010) gives a more specific definition of PIM:

Personal information management refers to both the practice and the
study of the activities a person performs in order to acquire or create,
store, organize, maintain, retrieve, use and distribute the information
needed to meet life’s many goals [. . .] and to fulfill life’s many roles
and responsibilities [. . .].

This definition puts an emphasis on the simple goal that drives most individuals:
managing information is a means to managing one’s life. To this end, one of the
main concerns of Alice is finding and re-finding information (Jones 2010), which
she needs when solving trivial tasks, e.g., checking if she is available tomorrow
for an appointment at 10 a.m. with her dentist or if she is the one in charge
of picking up the kids after school later in the day. Other PIM tasks, such as
keeping and organizing information, are in fact of no direct concern to her when

1.4. What is personal information management? 15

she needs to meet her goals. These tasks, which are concerned with determining
what information should be kept and in which format, are however necessary in
anticipation that they will later help Alice find the right information in a prompt
and efficient manner. In his visionary essay, Bush (1945) expressed that speed
and flexibility of retrieving information be an essential feature of a device that
keeps all the personal information of an individual:

A memex is a device in which an individual stores all his books,
records, and communications, and which is mechanized so that it may
be consulted with exceeding speed and flexibility. It is an enlarged
intimate supplement to his memory.

In this thesis, we take the point of view that PIM is a means to take back
control of one’s life, by making the most out of one’s personal information and
empowering oneself. Individuals, overwhelmed by information overload, afraid
that their information might fall into the wrong hands, and lured by vendors to
give away their information in exchange of services, are still unable to efficiently
find the right information within their data and make the most out of it in an
age where algorithms are capable of phenomenal feats.

We consider two aspects of PIM: overcome fragmentation and the loss of
functionalities by bringing together and enriching personal information. We
believe that these aspects are the first steps toward describing Alice’s personal
information as personal knowledge. The first aspect is about providing Alice with
a standardized access to her personal information, no matter the source, the
location, and the purpose. It is also concerned with making connections between
elements in her personal information more explicit: that an event present in
her work calendar and another one in the calendar of her social network service
represent the same entity, or that two contacts in her smartphone represent the
same person. The second aspect is concerned with deriving new facts from Alice’s
information, e.g., through automated reasoning, in order to remove incoherences
and infer a timeline of the user’s activity.

A system for personal information management
One vision of PIM is that of a system, the personal information management
system (PIMS) (Abiteboul, André, and Kaplan 2015), that centralizes and provides
an integrated and coherent view the user’s personal information. The PIMS has
complete access to the user’s personal information residing in external services.
Alice completely controls her PIMS and retains the ability, if she wants so, to
retrieve all the information it contains, extend it, modify it, and share it with
whoever she wants. Able to function as a manager of the user’s information that
is spread out across different systems, the PIMS gives Alice better control over
her personal information. By centralizing and providing a coherent view of her
information, the PIMS allows new features previously prevented by fragmentation:
global search, automatic synchronization between devices, a hub for her connected
devices, and advanced data analysis. Finally, the improved control over her
information puts Alice in a better position to negotiate services with vendors

16 Chapter 1. Personal information management

interested in this information. In this regard, a PIMS may be used to establish
some symmetry between users (customers) and vendors. One goal of this thesis
is to develop such a PIMS.

The state of the art of personal information management
There have been significant research efforts and projects attempting to fulfill the
different aspects of PIM: finding and re-finding, keeping, and organizing personal
information. Some of them have focused on one aspect, while other have tackled
multiple ones. In the following, we present some notable contributions. A little
outdated but very thorough review of the state of the art may be found in Jones
and Teevan (2011)’s book.

Finding and re-finding personal information

Significant effort has been put into understanding and improving how individuals
go about retrieving a piece of information to meet a particular need.

Desktop search For searching within the information stored in Alice’s personal
computer, desktop search tools have been developed for various operating systems
and platforms. Alice performs full-text search: a query is a sequence of words, and
the result is a collection of documents containing one or several of these words. At
its most basic level, documents are the individual files and folders on the file-system.
However, documents may also be the email messages, calendar events, contacts,
pages in the web browsing history, and applications stored or installed in the
user’s computer. Search may be performed on both the content (e.g, the content
of a text document, the description of a calendar event, or the text content of a
web page) and the metadata (e.g., the filename, folder name, file type, file author,
modification date, or page title), and queries may include special constructs to
filter on each of these attributes. A comprehensive list of desktop search tools
can be found in (Wikipedia contributors 2016). Many of these tools rely on being
able to parse several file formats and the maintenance of sophisticated indexes.
In particular, the IRIS (Cheyer, Park, and Giuli 2005) and NEPOMUK (Groza
et al. 2007) projects used Semantic Web (Berners-Lee, Hendler, and Lassila 2001)
technologies to provide an integrated view of the knowledge stored in the user’s
computer. These two projects went beyond desktop search by providing facilities
for exchanging information between different desktop applications.

Re-finding and personalized search Some research efforts have focused on
ameliorating the process of finding information that the user remembers having
seen in a certain context. This process is called re-finding. One idea is to exploit
what Alice remembers about the moment she saw this information (the meta-
information) (Dumais et al. 2003). Another idea is to exploit for instance the
temporal locality of a file, i.e., the set of files that were accessed immediately after
or before this file (Soules and Ganger 2005), or the sequence of links followed
by the user to find a web page (Teevan 2007). On another note, a profile of

1.4. What is personal information management? 17

the user’s interests built from personal information such as the user’s email
messages, calendar events, documents, or web browsing history, can be used
to provide personalized search, which has been show to be more efficient than
non-personalized web search (Teevan, Dumais, and Horvitz 2005).

Intelligent personal assistants The emergence of intelligent personal assis-
tants has opened up new possibilities and may improve in the long run the user
experience of a PIMS. Also known as (intelligent) virtual assistants, such assis-
tants are characterized by natural language user interfaces (text or voice-based)
and the ability to perform advanced tasks on behalf of user (e.g., making dinner
reservations, purchasing event tickets, or making travel arrangements) or provide
information on request (e.g., “when is my next appointment?” or “what is the
weather like tomorrow?”) by using multiple sources of information and interacting
with other systems. A list of open-source and proprietary such assistants can be
found in Wikipedia contributors (2017).

Keeping personal information

The keeping aspect of PIM addresses the question: what kind of information
should be captured and stored in digital form? Today, some aspects of Alice’s life
still eludes digital form (e.g., post-its and whiteboard notes). However, evidence
of unmet design needs in today’s PIM tools suggests that the improvement of
these tools may reduce the amount of information eluding digital form (Bernstein
et al. 2008). In the future, Alice might expect increasingly more aspects of her
life being captured digitally. But can too much be captured?

Total capture A central idea of Bush (1945)’s vision is the creation of a de-
vice that is able to digitally capture all the experiences and knowledge acquired
by Alice, so that it can act as a supplement to her memory. Lifelogging is an
approach that consists in visually capturing the world that the user sees in
her everyday life. It started in the 1980s with pioneers such as Steve Mann,
Gordon Bell, Jennifer Ringley, and Josh Harris, a history that is well described
by O’Hara, Tuffield, and Shadbolt (2008). MyLifeBits is a notable example
of a system that was built to store all kinds of lifelog data, for which Gordon
Bell was the experimental subject (Gemmell, Bell, Lueder, et al. 2002; Gemmell,
Bell, and Lueder 2006; Bell and Gemmell 2009). Driven by the advent of more
advanced and efficient wearable devices able to capture the different aspects of
one’s life and also facilitated by the development of cheaper and faster storage,
the activity evolved into the indiscriminate logging of more data, and more kinds
of data of one’s daily life. Lifelogging activities include recording a history of
machine enabled tasks (e.g., electronic communications, web browsing history,
and document manipulation), actively capturing life’s activities (e.g., writing
on an electronic diary, blogging, photo taking, and video recording), passively
capturing what the user sees and hears (e.g., via a wearable camera), monitoring
personal biometrics and activity tracking (e.g., steps taken, distance traveled,
caloric output, and sleep quality), logging the mobile device context (e.g., the

18 Chapter 1. Personal information management

user’s outdoor or indoor location, her movement, the ambient pressure, tempera-
ture, and humidity, and the identification of nearby users via Bluetooth), and
logging environmental context (e.g., smart home sensing, presence detectors, and
electricity, gas, and water consumption) (Gurrin, Smeaton, and Doherty 2014).
Lifelogging does not require that analysis of the logged information be known or
understood at the time logging occurs. One issue of indiscriminate logging is the
accumulation of information without much use besides the prospect of its huge
future potential (Bell and Gemmell 2009). In turn, lifelogging puts a burden on
Alice by increasing information overload and creating more data management
problems. Thus, one insight provided by prior research is that the effort should
be put on selectivity rather than total capture (Sellen and Whittaker 2010).

Quantified self Different from total capture, the quantified self is a movement
to incorporate data acquisition technologies on certain focused aspects of the
user’s daily life (Gurrin, Smeaton, and Doherty 2014). The quantified self focuses
on logging experiences with a clearer understanding of the goals, such as exercise
levels for fitness and health care. This has led to the development of specialized
wearable devices (e.g., smartbands and smartwatches) for monitoring personal
biometrics and activity tracking.

Organizing personal information

The last aspect of PIM deals with the management and organization of information.
It is also concerned with the management of privacy, security, distribution, and
enrichment of information.

Personal data service A personal data service (PDS) lets Alice store, manage,
and deploy her information in a structured way. A PDS may be used to manage
different identities, called “cards”. These identities are pieces of her personal
information (e.g., her address, preferences, affiliations, and contacts) that can she
can share with an external service (e.g., an e-commerce or a social networking
site). An example is Higgins (Trevithick and Ruddy 2012), which is a PDS
that works as Alice’s identity provider. Alice can use Higgins to register and
authenticate to different services while controlling the information that Higgins
provides to those services.

A PDS may also work as the central point of information exchange between
external services. For instance, an application that recommends new tracks based
on what Alice likes to listen may need to access Alice’s listening history. To do so,
the application can request access to external services that have information about
her listening history and use different adapters to extract this information in the
required format. Instead, the PDS centralizes Alice’s personal information so that
the application only needs to authenticate to one service (the PDS) using one
adapter. OpenPDS (Montjoye et al. 2014) and the Hub of All Things (HAT Data
Exchange Ltd. 2017) are examples of such PDSs. OpenPDS is particular in that
it focuses on preserving the Alice’s privacy by providing aggregated information
to third-party applications instead of raw data: Applications submit queries to

1.4. What is personal information management? 19

the user’s PDS, which ensures that all the sensitive data processing takes places
within the PDS and only information of reduced dimensionality is returned to
the application. The Hub of All Things particularly focuses on centralization the
information of the user’s connected devices.

Managing consent and information flow MyData (Poikola, Kuikkanieni,
and Honko 2015) describes a consent management framework that allows Alice
to control the data flow between a service that has information about her and a
service uses this information. In this framework, a central system holds all the
necessary credentials to access Alice’s services on her behalf. Contrary to a PDS,
the central system does not keep a copy of the information contained in those
services. Alice specifies rules that determine the information that is authorized to
flow from one service to another. The central system implements these roles by
providing or revoking the necessary authorizations between each of those services.
When two services exchange Alice’s information, the actual information does not
need to flow through the central system. The framework makes provisions for the
possibility that two services exchange Alice’s information without her consent if
they are legally entitled to do so (e.g., the exchange of information between two
public bodies for tax matters), in which case the central system simply notifies
Alice of this exchange. The framework is a proposition that is still at its early
stage. It is an all-or-nothing approach that represents a paradigm shift from
currently implemented flows of personal information between organizations and
services.

Lifestreams Organizing information as a time-ordered stream of documents,
called a lifestream, has been proposed as a simple scheme for reducing the time
Alice spends on manually organizing documents into a hierarchical file system (E.
Freeman and Gelernter 1996; E. T. Freeman 1997). It has the advantage of
providing a unified view of Alice’s personal information. Lifestreams can be seen
as a natural representation of lifelog information. The Digital Me system uses this
kind of representation to unify data from different information loggers (Sjöberg
et al. 2016).

Knowledge bases Several projects have leveraged knowledge representation
technologies to organize Alice’s personal information into a graph with an ex-
tensible schema and semantics. Such a structure allows the representation of
things like “this file, authored by this person, was presented at this meeting
about this project”. Notable projects include Haystack (Karger et al. 2005),
SEMEX (Dong and A. Y. Halevy 2005), IRIS (Cheyer, Park, and Giuli 2005),
and NEPOMUK (Groza et al. 2007). They integrate several sources of user
information, including documents, media, email messages, contacts, calendars,
chats, and web browsing history.

Personal dataspaces A dataspace (Franklin, A. Halevy, and Maier 2005) is
an abstraction in data management by which access to data from different sources
is provided along with very basic integration. Data is said to co-exist in a

20 Chapter 1. Personal information management

dataspace. A dataspace is able to interpret the data formats used by the sources
but does not necessarily integrate their information into a common representation.
For example a dataspace may provide full-text search over the information
stored. Data integration tasks are postponed until absolutely necessary. In the
context of PIM, personal dataspaces have been proposed as a way of dealing with
heterogeneity while providing basic navigation and search tools that are useful to
the user (Dittrich and Salles 2006; Blunschi et al. 2007).

Personal data lakes A data lake is a method of storing data in its raw format
within a single system. It defers the responsibility of understanding the data
to the consumer. To manage Alice’s personal information, the personal data
lake (Walker and Alrehamy 2015) has been proposed. Data is decomposed into
entities that are given unique identifiers and associated with some metadata (e.g.,
the type of data, modification date, source, and context). Consumers retrieve
entities by using queries that filter on these metadata attributes.

Self-hosted personal clouds In response to proprietary storage service
providers (e.g., Dropbox and Google Drive), open-source solutions have been
developed that Alice can use to host her own personal cloud. Some of these
solutions, including ownCloud (ownCloud 2016) and Cozy (Cozy Cloud 2016),
have evolved into application platforms that host various kinds of user-oriented
services, e.g., email, calendar and contact management. These systems lever-
age multi-device synchronization facilities and standard protocols to facilitate
integration with existing contact managers and calendars. The Cozy system is
notable for its ability to import data from different kinds of services (e.g., activity
tracking and financial services) into the system’s document-oriented database.
These tools bring the convenience of modern software-as-a-service solutions (e.g.,
there is nothing to install client-side) while allowing Alice to be in control, not
give away all of her privacy, and free herself from vendor lock-in.

1.5 Conclusion
In this chapter, we motivated the need for personal information management
by discussing some of the issues that users face with their information, and
presented our vision of PIM as the realization of a system under the user’s control
that integrates and provides a coherent view of the user’s personal information.
While PIM is not a new domain, the user’s inability of exerting control over her
information is a problem of increasing concern. Building upon such a system,
personal information could be elevated into personal knowledge, leading to the
realization of a personal knowledge base. Storage, integration, and search are
aspects of PIM that have been well considered in the past, but the development of
personal knowledge bases has fallen behind the development of more convenient
tools for a greater range of uses that most often create new personal information
silos. Such trend has not only caused the integration of personal information to be
more difficult, as a consequence of the increased heterogeneity and fragmentation

1.5. Conclusion 21

of this information, but has also made this integration more desirable, as a result
of the new opportunities created by the availability of richer information. One of
the goals of this thesis is to develop a system that attempts to fulfill our vision of
a PIMS and show some novel ways in which the user’s personal information can
be enriched based on the integration of different sources of personal information.
The next chapter presents and discusses a model for personal knowledge that
this system uses and describes in detail the different problems addressed in this
thesis.

Chapter 2

Personal knowledge

In this chapter, we describe a model for personal knowledge that we use throughout
this thesis. We begin by describing the abstract nature of personal knowledge,
its different dimensions, and what it represents (Section 2.1). Then we present
an ontology for personal knowledge (Section 2.2). We conclude the chapter
by introducing the different points addressed in this thesis involving personal
knowledge (Section 2.3).

2.1 The nature of personal knowledge

The Five Ws and one H
Journalism students have long been taught a principle, known as the Five Ws,
by which information about a story should be collected (Flint 1917). By this
principle, a story can only be considered complete if it provides an answer to the
following questions: what happened? who is involved? where did it take place?
when did it take place? and why did it happen? A sixth question is sometimes
mentioned: how did it happen? As highlighted by Vianna et al. (2014), answers to
these questions can help and guide Alice when searching for information that she
remembers having stored and accessed in the past. For instance, when searching
for an important document that she remembers having seen not so long ago, she
might recall and exploit information about how she came across this document
(read in an inbound email message), who is involved (Bob sent it to Alice), what
it is about (project Charlie), or when she saw it (last month). These pieces of
information provide hints to a system helping Alice find this document. In the
rest of this section, we describe the nature of personal knowledge with respect to
the dimensions captured by the Five Ws.

An extension to a person’s memory
In Section 1.4, we mentioned the vision of a PIMS as a supplement to the user’s
memory. Following such a vision, we view personal knowledge as extending the
memory of Alice. More specifically, it extends her explicit memory, which is a type
of long-term memory (Atkinson and Shiffrin 1968) responsible for keeping and

23

24 Chapter 2. Personal knowledge

consciously recalling facts and events. Explicit memory can be further decomposed
into episodic memory and semantic memory (Tulving 1972). Analogously, we
view personal knowledge as being composed of two parts — episodic knowledge
and semantic knowledge — respectively extending the two aspects of Alice’s
explicit memory.

Episodic knowledge

Alice’s episodic memory represents her memory of personal experiences and
autobiographical events that occurred at particular moments in her life. Episodic
knowledge intends to capture and extend this memory. By the definition given
in Section 1.1, information about such experiences and events is personal. A
great source of event information is Alice’s calendar. Different from her episodic
memory however, her calendar mostly contains information about planned events:
she uses her calendar to plan ahead how she spends her time. Planned events
may be past or future and may or may not end up being realized. Experienced
events, on the other hand, are information about past events that did in fact
happen. An example of a planned event is a doctor appointment scheduled for
the next day. An experienced event may for instance be the knowledge, available
the next day, of whether Alice attended this doctor appointment, if she was
late to it or not. A planned event can thus be linked to an experienced event
once it realizes. However, not all of Alice’s personal experiences can be planned:
she might spontaneously stop at a coffee shop on her way to her appointment.
Additionally, if a planned event does not end up being realized (e.g., if Alice
misses her appointment), knowledge about non realization is a form of experienced
event. While experienced events more accurately reflect Alice’s episodic memory,
planned events are useful for planning and prediction tasks, which are important
for managing one’s life and are at the heart of many information management
applications. Finally, both kinds of events have a similar structure. For these
reasons, we define episodic knowledge as the representation of both experienced
and planned events.

In the context of the Five Ws and one H, events are particular in that they
invariably capture the when dimension. In the case of experienced events, the
where is very often captured, as Alice is always somewhere, but this information
may not always be known to Alice or available to the PIM system. Alice is always
among the persons involved in an experienced event, i.e., the who. What an
event is about varies a lot, e.g.: the user spent $30 (in a supermarket) to buy
some groceries, she has to attend a work meeting, she was out jogging (along
the riverbank), or she has to pick her kids up (from school). The most difficult
dimension to capture is the why, which would actually allow us to understand
why for instance Alice had to leave a work meeting early: to pick up her kids.

Semantic knowledge

Alice’s semantic memory represents a record of facts, meanings, and concepts that
she has acquired over her lifetime. Semantic memory refers to factual knowledge
that holds independent of any particular personal experience or event in which

2.2. A model for personal knowledge representation 25

she may have acquired it. Her and her friends’ birthdates, the place where she
works at, and the kind of music that she likes are examples of semantic memory.
Semantic knowledge intends to capture and extend this memory. Parts of this
knowledge are immutable (e.g., her birthdate) and some others may change
over time (e.g., her current workplace). Such changing knowledge can also be
captured by episodic knowledge of events spanning long periods of times (e.g.,
her workplace over the years). Semantic knowledge is an important concept
of personal knowledge as it helps defining and understanding the contents of
events, e.g.: what do we know about the event’s organizer? how far is the event
from Alice’s workplace? or what is so particular about the event’s date (Bob’s
birthday)? By doing so, semantic knowledge clarifies the connections between
the elements of Alice’s episodic knowledge (e.g., Bob’s birthday parties over the
years).

Observed vs. inferred knowledge
We previously put forward the idea of personal knowledge as an extension to Alice’s
explicit memory. However, we must make clear that a PIMS, which is an agent
that is external to Alice, cannot read Alice’s mind, and thus cannot replicate
the exact contents of her memory. To model this mismatch, we distinguish
in the context of an external agent between observed and inferred knowledge.
Observed knowledge refers to knowledge that the agent can observe directly
from a trusted source, e.g., a birthday marked in Alice’s calendar. Inferred
knowledge is knowledge deduced by the external agent from observed knowledge.
Episodic knowledge can be inferred this way, in particular knowledge about
experienced events. For instance, knowledge that Alice is currently at work can
be inferred from the observation that her location, as given by the GPS of her
mobile device, comes close to her workplace. An external agent can also infer
semantic knowledge, for example from the analysis of episodic knowledge. For
instance, Alice’s preferences can be deduced from repeated occurrences of similar
events: if Alice listens to a lot of rock music, the agent could deduce that she
has a preference for the genre. Or, the fact that she loves this particular fish
restaurant can be inferred from the many times she’s been there. In the model
that we use to represent personal knowledge and that we describe in the next
section, provenance is used to distinguish observed from inferred knowledge.

2.2 A model for personal knowledge represen-
tation

In this section, we describe the model that we use to represent personal knowledge.
This model intends to capture both Alice’s episodic and semantic personal
knowledge, and distinguishes, from the point of view of an external agent (the
PIMS), between observed and inferred knowledge. For knowledge representation,
we use the Resource Description Framework (RDF) standard (Carroll and Klyne
2004; Wood, Cyganiak, and Lanthaler 2014), which we describe next. After that,

26 Chapter 2. Personal knowledge

we present the personal knowledge ontology, an ontology that we designed to
represent personal knowledge.

The Resource Description Framework
Knowledge representation and reasoning is concerned with how knowledge about
a domain can be formally represented and used by a machine for reasoning
about this domain (Levesque 1986) The concepts and relationships captured by a
knowledge model are formally defined in an ontology. In following the vision of
the Semantic Web (Berners-Lee, Hendler, and Lassila 2001), the World Wide Web
Consortium (W3C) has proposed standards for sharing knowledge and ontologies
on the Web, most fundamentally RDF.

RDF uses Internationalized Resource Identifiers (IRIs) to identify entities,
e.g., physical things, documents, and abstract concepts. (The IRI specification is
an extension to the Uniform Resource Identifier (URI) specification that allows
greater set of characters.) For example, Wikidata (Vrandečić and Krötzsch 2014),
a collaboratively edited knowledge base, uses the IRI http://www.wikidata.
org/entity/Q76 to identify the Barack Obama entity. To abbreviate IRIs, it is
common to define namespace prefixes. A namespace prefix is the abbreviation
of a namespace IRI. For instance, Wikidata uses wd as the namespace prefix for
http://www.wikidata.org/entity/. The IRI of the Barack Obama entity can
then be written as wd:Q76. To represent values such as strings, numbers, or dates,
RDF uses literals. A literal consists of a lexical form, i.e., a string, and a datatype
IRI, i.e., the identifier of a datatype that determines how to map the lexical form to
a value. RDF reuses the datatypes defined in XML Schema (Biron and Malhotra
2004; Peterson et al. 2012), e.g., xsd:string, xsd:integer, and xsd:date (xsd is
the conventional namespace prefix for https://www.w3.org/2001/XMLSchema#).
Some examples of literals are ("John Doe", xsd:string), "42", xsd:integer),
and ("1990-01-01", xsd:date). A blank node, which is neither an IRI nor a literal,
is an identifier that serves as a local existentially quantified variable. IRIs, blank
nodes, and literals are called resources. In RDF, a statement (or triple) consists of a
subject, which is an IRI or a blank node, a predicate, which is an IRI, and an object,
which is a resource. The predicate denotes a property, i.e., a resource that can be
thought as a binary relation. A RDF statement is written as 〈s, p, o〉, where s is
the subject, p the predicate, and o the object. To assert 〈s, p, o〉 is to say that the
relationship p holds between the resources s and o. For example, assuming that the
example:familyName represents the family name property (where example is the
namespace prefix for http://example.org/), the family name of Barack Obama
can be stated as: 〈wd:Q76, example:familyName, ("Obama", xsd:string)〉, An
RDF graph is a set of statements. A named graph is an RDF graph that has an
associated IRI or blank node (the graph name).

RDF Schema RDF Schema (RDFS) (R. Guha and Brickley 2004; Brick-
ley and R. Guha 2014) enriches RDF by providing basic elements for the de-
scription of ontologies (also called vocabularies), including constructs for the
definition of classes, class hierarchies, and property constraints. RDFS con-

http://www.wikidata.org/entity/Q76
http://www.wikidata.org/entity/Q76
http://www.wikidata.org/entity/
https://www.w3.org/2001/XMLSchema#

2.2. A model for personal knowledge representation 27

structs are based on RDF resources that are conventionally abbreviated us-
ing rdf and rdfs as the namespace prefixes for http://www.w3.org/1999/
02/22-rdf-syntax-ns# and http://www.w3.org/2000/01/rdf-schema#, re-
spectively. In RDFS, a class is a collection of resources such as Person and
City. The members of a class are known as the instances of the class. Classes
are themselves resources and are often identified by IRIs. For instance, Per-
son may be identified by example:Person. Classes are instances of the class
rdfs:Class. The rdf:type property is used to state that an IRI or a blank
node is an instance of a class, as in 〈schema:Person, rdf:type, rdfs:Class〉
and 〈wd:Q76, rdf:type, schema:Person〉. The property rdfs:subClassOf
is used to state that a class is a subclass of another class, i.e., that
any instance of the first class is an instance of the second one, as in
〈schema:Person, rdfs:subClassOf, schema:Thing〉. Properties are instances of
the class rdf:Property and literals are instances of the class rdfs:Literal.
Datatypes, assimilated to their IRIs, are both classes and instances of the
class rdfs:Datatype. Every literal is an instance of its datatype. For ex-
ample, xsd:integer is an instance of rdfs:Class and rdfs:Datatype, and the
literal ("42", xsd:integer) is an instance of xsd:integer. Each instance of
rdfs:Datatype is a subclass of rdfs:Literal.

The personal knowledge ontology
For representing personal knowledge, we use the schema.org vocabulary wherever
possible. This vocabulary is supported by Google, Yandex, Microsoft, and Yahoo,
and was initially developed as a set of schemas “for structured data markup on
web pages” (Seth 2011). Schema.org uses schema as the namespace prefix for
https://schema.org. Wherever this vocabulary is not fine-grained enough for
personal knowledge representation, we complement it with a vocabulary that
we designed, which lives in the namespace http://thymeflow.com/personal#
associated with the prefix personal.

The personal knowledge ontology is the resulting ontology. Next, we describe
the concepts captured by this ontology and put them into perspective with respect
to the different dimensions of personal knowledge that they capture: what, who,
where, and when. Figure 2.1 illustrates the classes and properties in this ontology.

Agents: persons and organizations

An important dimension of personal knowledge is the who. The schema:Person
and schema:Organization classes are used to model this dimension. Instances
of these classes represent the persons and organizations that Alice knows, has
heard of, or has interacted with. Alice interacts with persons including her family,
friends, colleagues, and all kinds of acquaintances in general, e.g., clients, her
car dealer, her hairdresser, or her lawyer. She interacts with organizations either
directly, e.g., when she receives a quote from her car dealer John, or indirectly, e.g.,
when she visits the website of the dealership business that employs John. These
interactions are associated with episodic memories. To express the relationship
between John and his business, we use the schema:affiliation relation. When

http://www.w3.org/1999/02/22-rdf-syntax-ns#
http://www.w3.org/1999/02/22-rdf-syntax-ns#
http://www.w3.org/2000/01/rdf-schema#
https://schema.org
http://thymeflow.com/personal#

28 Chapter 2. Personal knowledge

geo

address

uncertainty

longitude/
latitude

time

geo

velocity

angle/
m
agnitude

name

tel
ep
ho
ne

em
ai
l

address

give
nNa

me
/

fam
ilyN

am
e

birthDate

affi
liation

hom
eLo

cat
ion
/

wor
kLo

cat
ion

location

address
CountrypostalCode/

streetAddress/
postOfficeBoxNumber

addressLocality/
addressRegion

dateReceived/
dateSent

sender/
recipient

text/
headline

inReplyTo

item

ge
o

startDate/
endDate

location

attendee/
organizer

name/
description

name

pp

Agent

Person

OrganizationPlace

EventStay

Location

Message

EmailMessage

EmailAddress

Address

PhoneNumber

Country

PostalAddress

GeoCoordinates

GeoVector

string

dateTime

string

double
dateTime

string

X personal:X
personal:p

X schema:X
schema:p

X xsd:X
rdfs:subClassOf

Legend

Figure 2.1: The personal knowledge ontology. Rounded nodes are non-literal
classes while rectangular ones are literal classes (datatypes). An arrow from a
non-literal class X to a class Y with label p means that the object of a statement
whose predicate is p and whose subject is an instance of X is an instance of Y .
A line between two non-literal classes X and Y with a circle near Y means that
X is a subclass of Y .

2.2. A model for personal knowledge representation 29

it is not known whether an entity represents an individual or an organization,
we use the class personal:Agent, which subsumes the schema:Person and
schema:Organization classes. The name of an agent is represented via the
schema:name property. The given name, family name, and birth date of a
person are represented via the schema:givenName, schema:familyName, and
schema:birthDate properties.

Places

For modeling the where dimension of personal knowledge, places are used
(schema:Place). Simple places are defined either by a postal address, via the
schema:address property, or by a geographic point, via the schema:geo prop-
erty. A postal address usually has a country, a locality, a region, a postal
code, and a street address. Countries, localities, and regions are places them-
selves that are associated with a geographic area and are organized in an
inclusion hierarchy (via the schema:containsPlace relation). A geographic
point is defined by a set of geographic coordinates (schema:GeoCoordinates):
a longitude (schema:longitude) and a latitude (schema:latitude). We use
the geo URI standard (Mayrhofer and Spanring 2010) to identify geographic
coordinates. Agents are associated with places via the schema:location,
schema:homeLocation, and schema:workLocation relations.

Events

The schema:Event class is used to represent the experienced and planned events
that belong to Alice’s episodic knowledge. The properties of an event partially
answer the Five Ws: schema:name and schema:description define the what,
schema:location defines the where, schema:startDate and schema:endDate
define the when, and schema:attendee and schema:organizer describe the who.
The who is of course represented by an instance of personal:Agent and the
where is represented by an instance of schema:Place. To represent the when, we
use the standard XML Schema xsd:dateTime class. The name and description
of an event are typically text strings.

Messages

For describing communications between agents, the Message class is used. Mes-
sages are associated with single points in time via the schema:dateSent and
schema:dateReceived properties (the when).

The schema:sender and schema:recipient relations are used to represent
the who of a message. The object of a statement of such relation is an agent.
Technically, however, the sender and recipients of a message are the addresses to
which the message is delivered. An address identifies the medium via and the
location to which a message is delivered, e.g., an email address for an email box, a
telephone number for a telephone line, or a postal address for a mailbox. An agent
may own one or multiple agents. Using addresses (personal:Address) instead
of agents to represent the sender and recipients of a message would thus have

30 Chapter 2. Personal knowledge

been a legitimate alternative. Nevertheless, for modeling personal knowledge, we
prefer the use of agents for this purpose as a message is ultimately addressed
to a person or an organization. The schema.org ontology has made this choice
as well, which brings messaging closer to the semantics of schema:Action that
is used for expressing general interactions between agents. In this direction,
it should be noted that the addresses used for email or mail usually include
enough information to identify a person or an organization, which is necessary
for avoid ambiguity, as single mail or email box may be shared among multiple
individuals of the same family or organization. However, using agents instead of
addresses to represent the sender and recipients of a message makes it impossible
to express the address to which the message was sent unless such agents are
restricted to having only one address. The address may contain important
information about a message, e.g., knowing that a message was sent to Alice’s
professional address may tell us that the message is about work. This is why
the personal knowledge ontology enforces this restriction. To represent a real-
world person or organization that is reachable via multiple addresses, multiple
personal:Agent instances are used. As we see later in this section, these instances
are said to be facets of the same real-world entity. The address of an agent is
represented via the schema:telephone, schema:email, and schema:address
relations, whose objects are respectively instances of the personal:PhoneNumber,
personal:EmailAddress, and schema:PostalAddress classes.

Messages also have a subject and a body, which are represented via the
schema:headline and schema:text properties, respectively. For representing
conversations or threads, the personal:inReplyTo relation is used. The state-
ment 〈s, personal:inReplyTo, o〉 says that the message s is a reply to the mes-
sage o.

Locations and Stays

Places are useful for representing the location of an event or the locations that
are important to a person or an organization (e.g., the person’s home or the
organization’s offices). For representing the geographical position of Alice over
time (i.e., Alice’s trajectory), the personal:Location class is used. Each instance
of personal:Location consists of a time, represented via the personal:time
property, and a geographic point, represented via the schema:geo property. Since
Alice’s location may only be known up to some uncertainty, the geographic point
of a location is often associated with some confidence interval, which is defined by
a radius in meters and is represented via the personal:uncertainty property.
The geo URI specification used to define the IRIs of geographic coordinates
conveniently includes an uncertainty parameter. Finally, a period of time during
which Alice remained in the same place (e.g., a restaurant, the gym, or her office)
is called a stay. Stays are instances of the personal:Stay class. A stay consists
of a geographic point and a period of time. This period of time is represented
by start and end times (schema:startDate and schema:endDate). Instances of
personal:Location that correspond to a stay are associated with this stay via
the schema:item relation (in such a statement, the stay is the subject and the
location is the object).

2.3. Goals of this thesis 31

Facets

In order to express that a group of instances represent the same real-world
entity, the personal:sameAs equivalence relation is used. Agents, events, places,
or messages that belong to the same equivalence class are called facets of the
real-world entity that they represent. The personal:sameAs relation allows
the representation of co-reference between different sources of knowledge. For
instance, it may happen that Bob, a friend of Alice, appears both on the address
book of Alice’s mobile phone and on Alice’s friend list in some social networking
site. These two references of Bob, originating from different sources, may be
represented in RDF as two distinct resources (IRIs). To express that these two
resources refer to the person, the personal:sameAs relation is used to link one
to the other. The representation of facets allows some flexibility that is useful
when the knowledge of co-reference is uncertain and may change over time. In
addition, as discussed during the description of the representation of messages,
facets can be used to represent an agent entity that owns multiple addresses when,
for modeling reasons, a single agent facet is only allowed to have one address.

Personal knowledge base
In our context, a knowledge base (KB) is a set of RDF named graphs. The
personal knowledge base of the user is a knowledge base that represents the user’s
personal knowledge from the point of view of an external agent (the PIMS)
using the personal knowledge ontology. In this knowledge base, named graphs
are used to represent provenance. Each such graph represents a single unit of
knowledge, i.e., the smallest collection of statements to be associated with a single
provenance. We call document such a collection. The name of this document,
i.e., the name of the graph that this document represents, is an instance of
the personal:Document class. This instance is associated with the documents
source via the personal:documentOf relation, whose object is an instance of
personal:Source. To distinguish between observed and inferred knowledge,
the personal:ObservationSource and personal:InferenceSource classes are
used, which are subclasses of personal:Source.

2.3 Goals of this thesis
In this section, we introduce the specific tasks addressed in this thesis. As
mentioned in Section 1.4, these tasks are generally concerned with collecting and
enriching personal information.

Knowledge integration and querying
In building a knowledge base, one important task is to merge information from
multiple sources with different schemas and representation models. The repre-
sentation of personal information may vary from one source to another in the
following ways:

32 Chapter 2. Personal knowledge

• Different concepts: Alice’s contacts in a business-oriented social networking
site are her “business connections”, her contacts in a general social network-
ing site are her “friends”, and her contacts in an online dating site are her
“possible dates”.

• Different contexts: Alice may use an alias instead of her real name for her
social network profile (e.g., for privacy reasons), but use her real name when
sending email messages.

• Different granularity and structure: An email message that describes an
event contains mostly unstructured (textual) information about this event,
whereas a calendar application may use fields such as name, date, and
location to describe this event.

• Different channels: In order to store a note or document, Alice may send
an email to herself or use her note-taking application.

Each source may exhibit various degrees of uncertainty and redundancy within
itself, due for the instance to:

• Duplicates: Alice’s address book may contain duplicate entries for the same
person (e.g., entries share the person’s name but have different telephone
numbers).

• Inaccuracies: The times for scheduled events are mostly inaccurate since
they are estimates of future things to happen. Also, for reasons of simplicity,
applications may be biased or limited in their representation of information.
For instance, times are usually set in 30-minute increments in calendar
applications and most of calendar applications require that users define a
planned end date for each future event. For some events, such as a dinner
appointment, Alice may not be able to provide an accurate end date in
advance.

• Incompleteness: not all of Alice’s real-life friends have an account on the
social networking service that she uses.

• Errors: The names of contacts that Alice manually entered in her ad-
dress book may contain typographical errors (e.g., “Johnson” instead of
“Johnsson”).

• Concealment: For privacy reasons, Alice may provide incorrect information
on purpose to services that require them (e.g., her birth date or address).

• Outdatedness: She may also have responded “Going” to an event to which
she never went.

• Incoherence: Alice may have signed up for two different events happening at
the same time in distant places. Since it is clear that she may not possibly
attend both, such information is incoherent.

2.3. Goals of this thesis 33

When gathering information from multiple sources without reconciling them,
duplicates naturally appear. For instance, there may be a contact entry for Bob
in Alice’s address book and in Alice’s social networking site. In presence of
uncertainty in the sources, errors in the sources may become incoherences. For
instance, a typographical error in the name of Bob in Alice’s address book may
be incoherent with the name that appears on Bob’s social network profile.

We could acknowledge the presence of uncertainty and representational differ-
ences in sources of personal information by using a personal information model
in which knowledge is represented as close as possible to information sources: In
such a model, we could state for instance that there exists an agent called “Bob”
in source A and an agent called “Robert” in source B, and that we have more
confidence in source B than in source A. However, with such a representation
of knowledge, Alice would not be able to get an answer to queries that need the
reconciliation of information from different sources: “What is the most recent
message received from Bob?” Being capable of expressing that “Bob”, as he calls
himself on his social network profile, and “Robert”, as he is known in email com-
munications, represent the same person is necessary for properly answering this
query. In our setting, we would like to integrate information into a representation
model in which agents, events, messages, places, and locations representing the
same real-world entities are connected as much as possible, as the user, Alice,
would see them. In this model, it is not contradictory that Bob, Alice’s friend,
may be represented as both “Bob” and “Robert” in different sources. They can be
seen as two distinct facets of the real-world entity Bob (cf. Section 2.2). When the
connection between these facets is not explicit in the sources (e.g., via a common
identifier), automatically identifying equivalent facets is necessary for reconciling
these sources. Similarly, a calendar event about a dinner at L’Arpège at 7 p.m.
could be automatically linked to a stay, derived from Alice’s location history,
representing the fact that Alice spent some time near that restaurant around
that hour. In both situations, there is a certain degree of uncertainty associated
with automatically inferring these connections. Though also important, we do
not consider in this thesis the explicit general modeling of uncertainty within the
knowledge base. Instead, to simplify, the inference tasks that we consider model
uncertainty at the information level and output a non-probabilistic representation
at the knowledge level. In our context, we denote by knowledge integration the
process of merging information from different sources into a personal knowledge
base, which includes identifying facets of the same real-world entity, such as
described.

Another important task in building a personal knowledge base is querying
it. The user should be able to query the knowledge base within and across
its dimensions and aspects: data types (e.g., numeric, date, and text), entity
types (e.g., agents, events, messages, stays, and places), provenance, facets, and
real-world entities. For instance, Alice should be able to query real-world entities
instead of facets, so as to retrieve all the messages from her friend Bob regardless
of the communication medium.

34 Chapter 2. Personal knowledge

Related work Providing a unified view of the data residing in different sources
by using a mapping from queries over a global schema to queries over the source
schemas, defined in some formal logic, is called data integration, which is a well
known subset of database theory (Abiteboul, Manolescu, et al. 2011). When an
entity may be represented in two different sources without a common identifier,
data matching has to be performed prior to data integration. Data matching
(also known as record linkage, data linkage, entity resolution, object matching, or
field matching) is the task of identifying records that refer to the same entity
across different sources (Christen 2012). Data matching may involve the use of a
probabilistic model to represent the probability that two records represent the
same entity. It is extensively utilized in data mining projects and in large-scale
information systems by business, public bodies, and governments. Example
application areas include national censuses, the health sector, fraud detection,
online shopping, and genealogy (Christen 2012). More generally, when sources
contain unstructured or semi-structured data and when information may be
contained within text (e.g., the date of an event within the body of an email
message) or rich media (e.g., the persons in a photo), the task of merging
information from these sources is called information integration. In particular,
information extraction (Cowie and Lehnert 1996) denotes the set of techniques to
extract information from unstructured resources. Information integration, which
is a superset of data matching, aims at reducing redundancy and uncertainty
when combining information.

Knowledge integration can be understood as being one level above informa-
tion integration, in accordance with the DIKW hierarchy’s interpretations of
knowledge and information (cf. Section 1.1). Knowledge integration is the pro-
cess of deriving a common knowledge representation from different sources of
information. When information sources are also knowledge sources (i.e., each
source has its own ontology), data integration techniques can leverage this formal
representation via ontology-based integration (Wache et al. 2001). The process of
finding automatic correspondences between concepts in two ontologies is known
as ontology alignment (Euzenat and Shvaiko 2013). Knowledge integration can
also be seen as incorporating information into a body of existing knowledge that is
larger in scope, possibly universal. In this direction, Berners-Lee (2006) outlined
a set of best practices for publishing knowledge that is linked to or can be linked
to from knowledge published by others. Linked data is the term used to refer
to this publishing method. It is based on RDF for knowledge representation
and the use of dereferenceable HTTP URIs to identify resources (i.e., entities,
concepts, and relations). Issuing an HTTP GET request to the URI that identifies
a resource should provide information about this resource (including links to
related resources) in RDF. These practices have been widely adopted by an
increasing number of providers, effectively forming a knowledge base out of a set
of distributed heterogeneous sources (Bizer, Heath, and Berners-Lee 2009) — the
Web of data. For querying RDF, SPARQL is the language of choice (Harris and
Seaborne 2013).

2.3. Goals of this thesis 35

In this thesis In Chapter 6, we present the description and the evaluation of
a system that we designed and implemented to perform personal knowledge inte-
gration from different sources of personal information: the user’s email messages,
address books, calendars, and location history. The retrieval and transformation
of information from each of these sources into personal knowledge (in RDF) is
described in Chapter 3. The system integrates them into a personal knowledge
base that Alice can query within and across dimensions. This integration involves
entity resolution of agents and spatiotemporal alignment between events and
stays.

Inferring a timeline of user activity
An important aspect of Alice’s personal knowledge base is its ability to sup-
plement her episodic memory (cf. Section 2.1). To this end, the knowledge
base needs to maintain a history of Alice’s activities, represented as experienced
events. Information about Alice’s activities can for instance be retrieved from
her electronic diary, where she reports on her daily experiences.

Today, many applications allow Alice to keep a private electronic diary, but
some users prefer to make their diaries public by writing a blog, as a form of
social activity (Nardi, Schiano, and Gumbrecht 2004). Social networking sites,
where users share their everyday experiences with a smaller group of people,
fit somewhat in the middle. An alternative to diary-like sources for obtaining
information about Alice’s activities is any source that can provide systematic
observations of her actions and her environment over time: where is she now?
what is she doing? who is she with?, etc. In fact, these sources are complementary:
While analysis of self-reported experiences is insightful, it has also been recognized
that “diary studies”, a research method where participants of an experiment are
asked to write about their experiences and activities on a diary, benefits from
objective systematic measures and vice versa (Bolger, Davis, and Rafaeli 2003).

As discussed in Section 1.2, observations of her actions and her environment
can be produced either actively or passively. When Alice interacts with a machine
that keeps a log of what it does, she passively produces a history of actions: she
turned on her computer at 8:03 a.m., she sent an email at 11:40 a.m., she ordered
a book online at 2:32 p.m., she entered in her calendar at 4:56 p.m. a new event
scheduled for tomorrow. In doing so, she also actively produces the what of these
experiences, when applicable: the email’s content, the book’s name, the event’s
description. Many machine applications do in fact keep logs, or at the very least
record the creation and latest modification times of editable content. However,
these logs do not necessarily tell anything about Alice’s environment (e.g., who is
she with? or is she in a business meeting?) nor about actions that do not involve
interacting with a machine (e.g., is she on the way to work?).

Another way of obtaining information about Alice’s actions and environment
is through lifelogging, which lets Alice record the world that she sees using
a wearable camera (cf. Section 1.4). Though lifelogging is directly useful for
reminiscing and recollecting, the stream of images that it produces can also be
automatically analyzed to infer a history of Alice’s activities (Doherty, Moulin,

36 Chapter 2. Personal knowledge

and Smeaton 2011; Doherty, Caprani, et al. 2011). However, such practice is costly.
For instance, Gordon Bell, a lifelogging pioneer who started wearing a camera in
2000, recently stopped wearing his camera on the grounds that lifelogging “wasn’t
something that was bringing a lot of value to [his] life” (Regalado 2016). For Bell,
the information collected by the sensors in Alice’s smartphone, smartwatch, and
fitness wearables (e.g., location and activity trackers), as well as what she posts
on social media together constitute a lifelog.

One of our goals is on recreating Alice’s history of visited places and itineraries
followed from mobile device sensor data. The first goal is to be able to segment
her day into two kinds of events: stays and moves. Stays are the moments and
places where Alice has remained for some amount of time (cf. Section 2.2), and
moves are the moments in-between. A move usually corresponds to a trip to go
from one place to another, but it might also correspond to richer outdoor activity
(e.g., jogging and sightseeing). The second goal is to describe for each move the
multimodal itinerary that the user followed. The goal is to identify the different
transportation modes used by Alice during each move for modes such as foot,
bicycle, car, bus, train, and metro, and identify, for public transportation modes,
the public transportation routes taken by Alice.

Related work Commercial applications already exist that collect and analyze
mobile device sensor data in order to show Alice a history of her stays and moves:
Moves (ProtoGeo 2013), SAGA (A.R.O., Inc. 2011), and Google Timeline (Google
2015b). However, they do not always distinguish among car, bus, and train, and
when they do, they do not identify the public transportation route taken by
Alice. These applications are in part the result of the rich location (e.g., satellite-
based, Wi-Fi-based, and cellular-based positioning) and movement tracking (e.g.,
accelerometer) sensors of a mobile device combined with activity recognition
techniques, which we discuss in Section 5.8.

In this thesis In Chapter 4, we describe how automatic stay/move segmen-
tation can be performed. In Chapter 5, we show how multimodal itinerary
recognition can be performed. Finally, in Chapter 6, we show that it is possible
to connect the knowledge extracted from this segmentation by connecting stays
to possible events in Alice’s calendar, which results in an activity timeline that is
connected to all of the dimensions of her personal knowledge base.

Synchronization of personal information
Information synchronization is the process of establishing and maintaining con-
sistency among information between two or more sources of information. An
example is the synchronization between the contacts in Alice’s smartphone and
those in her personal computer. Assuming that each contact possesses an identifier
and that two contacts representing the same individual share a common identifier,
a synchronization process can begin by finding the contacts in both sources with
identifiers in common and merging their attributes. Then the contacts in one
source that do not exist in the other (i.e., whose identifiers are not present in

2.3. Goals of this thesis 37

this other source) are transferred to this other source and vice versa. A conflict
occurs when a contact appears in both sources with different values for some
attribute. In that case, it must be resolved, by either requiring user intervention
(e.g., by asking Alice what to do) or using a predefined fully automatic rule (e.g.,
by keeping the attribute that was modified last, if this information is available).
Once consistency has been established, the synchronization process can maintain
it over time by propagating into one source each change that happens in the
other. During this propagation, conflicts can however also happen, for instance
if an attribute is modified in both sources before they can synchronize. Such a
conflict may be resolved using the same rules as before. Propagating changes
as soon as they happen alleviates the appearance of conflicts, which works well
assuming that changes can be propagated and acknowledged faster than the rate
at which information changes in each source.

When entries or instances (e.g., contacts) representing the same entity (e.g.,
individual) may appear with different identifiers in different sources, synchroniza-
tion may lead to the creation of duplicates in each source. To prevent this, data
matching should be performed before attempting synchronization.

We distinguish two kinds of information synchronization: one-way and two-way.
In one-way information synchronization, changes are unidirectionally propagated
from a source to a target information system. No changes in the target are
ever propagated to the source. In two-way information synchronization, changes
propagate both ways.

Related work Multiple information synchronization techniques have been
successfully applied to different kinds of applications: file systems (Tridgell and
Mackerras 1996), databases (Wiesmann et al. 2000), address books (Hansmann
et al. 2002), and cloud storage (Drago et al. 2012). The use of multiple devices
and systems by a single individual (cf. Section 1.2), which usually entails the
replication of personal information, has made information synchronization an
important aspect of personal information management. However, the centralized
management of data, where only one information system, i.e., a central server,
holds an exact and complete copy of the data and where content is accessed by thin
clients (with no storage) and edited by synchronously pushing each modification
to the central system, simplifies the requirements of information synchronization.
Examples of such management include email or file storage web applications that
Alice can use to consult her email or browse her documents without having to
download a complete copy of the data to her device. Nevertheless, web application
technology has also facilitated the development of cloud collaboration tools, which
allow multiple users to co-author documents on the Web in near real-time, and
have led to the development of new automatic conflict resolution algorithms (Sun
and Ellis 1998; Fraser 2009).

In this thesis The personal knowledge management system that we present
in Chapter 6 integrates different sources of personal information. We show how
the system’s knowledge base is kept synchronized by propagating changes in any
of the sources into the knowledge base, while inferring possibly new knowledge

38 Chapter 2. Personal knowledge

relative and according to these changes. Conversely, we show how changes in
the knowledge base are propagated back into the sources. Finally, we show how
the integration and two-way synchronization realized by this system can used
to keep multiples sources of the same kind (e.g., the set of all address books)
synchronized.

Personal analytics
Analytics is the discovery, interpretation, and communication of meaningful
patterns in data. It uses statistical, machine learning, and data visualization
techniques. Coined by Stephen Wolfram, personal analytics refers to applying
analytics to the data of an individual for the individual’s own benefit (Regalado
2013). For Alice, it is a way to explore and gain insight into matters such as:
what can I do to be more active? how does the food I eat impact my mood?
is weather linked to my productivity at work? and what aspects of my day
correlate with good sleep? For performing personal analytics, personal knowledge
integration is useful, as the quality of analytics depends on the coherence of the
input information. Additionally, analytics relies on being able to query the data
efficiently within and across dimensions.

A related task is the prediction of Alice’s future events by analyzing everything
that is currently known, including the history of past events. More generally,
predictive analytics refers to making guesses about unknown events, whether past,
current, or future (e.g., did Alice attend yesterday’s event?). Since the knowledge
integration and user activity inference tasks are already concerned with past and
current events, we assimilate prediction to the foreseeing task, which does not
have access to current observations of the predicted reality (e.g., Alice’s location
when the event supposedly takes place).

Related work Wolfram (2012) uses personal analytics to gain insight about
his life using email, calendar, phone call, keystroke, file, and pedometer data. He
learns how the changes that occurred throughout his life had an impact on his
activities, and learns how “shockingly regular” many aspects of his life have been.

Quantified self applications usually involve some analytics applied to the data
that they collect (e.g., activity, health, spending, mood, time management, or
communication information), for instance by showing the user aggregate data
over some period of time. However, more interesting are those analytics that
combine multiple sources of information. Exist (Cooper and Sharp 2017) is a
commercial application that provides analytics from multiple sources of personal
information, including calendars, activity trackers, and social networking services.
It finds correlations such as “Your weight is higher after you check-in to this
one restaurant more”. An open-source application that does similar things is
Fluxtream (Wright 2016).

In this thesis In Section 6.5, we show some basic examples of personal analytics
that are based on querying Alice’s personal knowledge base. The good level

2.4. Conclusion 39

integration provided by the knowledge base combined with its querying capabilities
make such queries possible.

We do not show in this thesis examples of predictive analytics. One thing that
we experimented with was to guess the location of a future calendar event using
the contents of its different other attributes (e.g., the event’s time, description,
and participants), however, our attempts did not yield results better than a blind
guess using the datasets at our disposal.

2.4 Conclusion
In this chapter, we presented the personal knowledge ontology and introduced in
particular the concepts of stays, facets, as well as observed and inferred knowledge.
Stays, which may be derived from the user’s location history, are particularly
important when inferring a timeline of user activity (Chapters 4 and 5), while
facets and both observed and inferred knowledge are important concepts in
knowledge integration (Chapter 6). The next chapter describes the different
sources of personal information that are used throughout this thesis and their
representation using the personal knowledge ontology.

Chapter 3

From data to personal knowledge

In this chapter, we present the different sources of personal data specifically con-
sidered in this thesis, describe the information they hold, discuss their significance,
and describe the process by which they are converted into personal knowledge
(cf. Section 2.2).

We begin by describing standard sources of personal information: email
messages, address books, and calendars. For these sources, there exist standard
protocols and formats whose usage is widespread. Then we describe a particular
social networking service that provides a non-standard web API to access user
data. Finally, we consider mobile device sensors, for which we developed an
application to record and retrieve different kinds of data.

3.1 Email messages
Electronic mail, or email, is a standardized method for exchanging messages
between computer users. The email system relies on a decentralized network of
servers: mail submission agents, mail transfer agents, and mail delivery agents.
These servers exchange messages using the Simple Mail Transfer Protocol (SMTP),
which specifies how a submitted email message should be processed in order to
reach its intended destination. The recipient of such a message is specified by
an email address. An email address (e.g., alice@example.com) identifies an
email box and is defined by its local-part (e.g., alice) and its domain (e.g.,
example.com) An email box is usually associated with an individual (its user),
who can access its contents (e.g., incoming messages) by authenticating to the mail
server responsible for her email box. The email system relies on the Domain Name
System (DNS) (Mockapetris 1987) to find the mail server responsible for accepting
email messages on behalf of a recipient’s domain. The email system is among the
most successful and frequently used computer applications, and for many people
the main channel for distributing information (Whittaker, Bellotti, and Cwizdka
2011). For this reason, it is essential for personal information management. In
the implementation that we present in Chapter 6, email messages are the only
kind of schema:Message we consider. Other messaging systems such as text and
instant messaging are similar in content but less standard in general and much
harder to retrieve.

41

42 Chapter 3. From data to personal knowledge

The format of email messages is specified by the RFC 5322 (Resnick 2008). A
message consists of a header and an optional body. The header is structured into
fields, and each field has a name and a value. Header fields contain information
such as the sender (the From: field), the recipients (To:), the subject (Subject:),
and the creation date (Date:) of the message. The body of a message supports
many formats, for both text (e.g., plain text and HTML) and binary content
(e.g., media or applications). A globally unique identifier is usually attributed
to an email message by its sender, which stores it in the Message-ID: header
field. They are used to prevent multiple delivery and for referencing a mes-
sage from another. For instance, when replying to a message, the In-Reply-To:
header field should be filled with the Message-ID of the message this is a reply
to. Email messages are particular in that they can include different kinds of
recipients, the carbon copy recipients (Cc:), and the blind carbon copy recipients
(Bcc:). We use the personal:primaryRecipient, personal:copyRecipient
and personal:blindCopyRecipient properties, which are subproperties of
schema:recipient, to distinguish them.

As discussed in Section 2.2, the sender or a recipient of an email message does
not directly refer to a person. Instead, it refers to an email address, which identifies
an email box. Each correspondent present in a From:, To:, Cc:, and Bcc: header
field has an email address and an optional display-name (e.g., bob@example.com
or Bob <bob@example.com>). These fields are important sources of knowledge.
A simple email address such as jane.doe@inria.fr implicitly provides the given
and family names of a person (“Jane Doe”), as well as her affiliation (“Inria”).
Performing DNS and WHOIS (Daigle 2004) lookups on the domain or IP ad-
dress of the domain of the email address can yield extra information about an
organization, such as its full name, address, and country of origin. However,
some email addresses provide by themselves little knowledge about its owner
and some almost none, like for instance j4569@gmail.com, which is managed by
a public email service provider. When a display-name is provided, as in Jane
Doe <j4569@gmail.com>, the name of the person is usually revealed. Sometimes,
the display-name contains some extra information, as in Jane Doe - Human
Resources <jane.doe@inria.fr>. In this thesis, we do not consider the extrac-
tion of such additional information. Addresses representing organizations may
include for instance edbt-school-2013@imag.fr or fancy_pizza@gmail.com.
The correspondents of an email message are represented as personal:Agent
instances. The schema:email and schema:name properties are used to represent
the email address and name (if it is provided) of each correspondent. In the
personal knowledge ontology, personal:Agent instances extracted from email
messages with the same address and display-name are considered indistinguishable,
and a unique IRI is generated for each distinct display-name–address pair.

Email messages can be retrieved from a mail server using a standard email
retrieval protocol. Locally, an email message can be stored in a file with the
extension .eml. In a standard email retrieval protocol such as IMAP (Crispin
2003), the server assigns a unique identifier to each message. The user can
retrieve, delete, or create messages, but the contents of an email message cannot
be modified. This gives the user significant control over the contents of her email

3.2. Address books 43

Date: Wed , 4 Jan 2017 10:25:25 0100
From: Alice S. <alice@thymeflow .com >
Message -ID: <60 D86715 .9060503 @thymeflow .com >
Subject : Thank you for attending
To: Bob E. <bob@example .com >
Cc: carol@thymeflow .com

Dear Bob ,

Thank you for participating in yesterday ’s event. It
was a pleasure to have you with us. We will take into

account your suggestions for our next release !

Sincerely ,
Alice S.

Figure 3.1: An example of an email message sent to Bob and Carol (in Cc) by
Alice.

box, although in practice client implementations may restrict the operations
that are allowed in order to fit common use cases. Synchronization between the
server and the client is maintained using message identifiers and the guarantee of
message immutability.

An example of an email message and its representation in the personal
knowledge ontology are shown in Figure 3.1 and Figure 3.2.

3.2 Address books
Electronic address books are databases of contact information. Each entry
represents a single contact and possesses fields such as a given name, family name,
telephone number, an email address, address, and organization. Often associated
with electronic communications, electronic address books are a common feature in
email applications and telephone devices with memory capabilities. To allow the
quick and reliable exchange, storage, and organization of contact information, a
file format, known as vCard, was developed by the Versit Consortium, which was
later adopted and standardized by the Internet Engineering Task Force (IETF)
(Perreault 2011). However, since basic contact information management does
not require the interaction between different computer systems, the standard
has not been adopted as widely as email. While most widespread address book
applications today support vCard, they sometimes only partially do so, do it
incorrectly, or do not use the latest specification (Rossini 2012). Rossini (2012)
notes that the abuse of grouped and custom properties, allowed by the vCard
standard, prevents interoperability and promotes vendor lock-in.

For publishing contact information on the Web, there exists a serialization

44 Chapter 3. From data to personal knowledge

@PREFIX schema: <http://schema.org/> .
@PREFIX xsd: <http://www.w3.org/2001/XMLSchema#> .
@PREFIX personal: <http://thymeflow.com/personal#> .
@PREFIX service: <http://thymeflow.com/personal#Service/File/data> .
@PREFIX ctxt: <http://thymeflow.com/personal#Service/File/data/File?id=> .

<file:///data/message-1.eml> {
<file:///data/message-1.eml> personal:documentOf service:File .
<mid:60D86715.9060503@thymeflow.com>

schema:dateSent "2017-01-04T11:25:25.000+01:00"^^xsd:dateTime ;
schema:headline "Thank you for attending" ;
schema:sender ctxt:edf1736e ;
schema:text """Dear Bob [...] Alice S.""" ;
personal:copyRecipient ctxt:337a73a0 ;
personal:primaryRecipient ctxt:2ea82462 ;
a schema:EmailMessage .

}
ctxt:2ea82462 {

ctxt:2ea82462 schema:email <mailto:bob@example.com> ;
schema:name "Bob E." ;
personal:documentOf service:File ;
a personal:Agent .

}
ctxt:337a73a0 {

ctxt:337a73a0 schema:email <mailto:carol@thymeflow.com> ;
personal:documentOf service:File ;
a personal:Agent .

}
ctxt:edf1736e {

ctxt:edf1736e schema:email <mailto:alice@thymeflow.com> ;
schema:name "Alice S." ;
personal:documentOf service:File ;
a personal:Agent .

}
{

<mailto:alice@thymeflow.com> schema:name "alice@thymeflow.com" ;
personal:domain "thymeflow.com" ;
personal:localPart "alice" ;
a personal:EmailAddress .

<mailto:bob@example.com> schema:name "bob@example.com" ;
personal:domain "example.com" ;
personal:localPart "bob" ;
a personal:EmailAddress .

<mailto:carol@thymeflow.com> schema:name "carol@thymeflow.com" ;
personal:domain "thymeflow.com" ;
personal:localPart "carol" ;
a personal:EmailAddress .

}

Figure 3.2: The email message that was shown in Figure 3.1 represented in the
personal knowledge ontology (TriG syntax (Carothers and Seaborne 2014)). The
source is a file called/data/message-1.eml.

3.3. Calendars 45

format of the vCard model that allows it to embedded inside an HTML page,
known as the hCard microformat. There also exists RDF vocabularies, namely the
Friend of a friend (FOAF) (Brickley and Miller 2014) and schema.org ontologies,
which can be used for this purpose in its different serialization formats: microdata,
RDFa, and JSON-LD (Bizer, Meusel, and Primpeli 2016). In applications, vCard
is still however the dominant standalone file format, and this is what we use in
the implementation that we present in Chapter 6, despite the aforementioned
problems.

Electronic address books are a rich source of structured information. Since
efficient communications depends on the accurate and efficient retrieval of contact
information, the reliability, up-to-dateness and coherence of address books is high
for contacts with whom the user communicates the most. In return, contacts may
be represented from the point of view of the user, through the use of aliases and
contextualized nouns (e.g., “Mom” and “Dad”). Regardless, we map each contact
to an instance of personal:Agent and represent its fields using the schema:name,
schema:familyName, schema:telephone, schema:email, schema:address, and
schema:affiliation properties. When appropriate, the content of each field is
normalized, e.g., telephone numbers are normalized to international format based
on a country setting globally provided by the user.

VCards are usually stored in files with the extension .vcf, and are usually
transmitted over email. For accessing and sharing vCard information on a server,
CardDAV (Daboo 2011) can be used, which is an extension of WebDAV (Dusseault
2007), a protocol for authoring content on the Web. Based on HTTP, WebDAV
allows users to create, delete, retrieve, and modify documents on a server. In
WebDAV, documents are grouped in directories, and directory hierarchies are
supported. HTTP URIs are used to identify documents and directories. The
authority part of the URI identifies the server, and its path represents the location
of the document or directory in the hierarchy. To track changes to documents
or directories, WebDAV uses entity tags and last-modified dates, which are
HTTP features. In CardDAV, each document is a vCard, and each vCard has an
identifier (set on the vCard’s UID field) that is guaranteed to be unique within a
directory. UIDs, entity tags, and last-modified dates are useful for client–server
synchronization. Given the appropriate permissions, the user has complete control
over the information stored in a CardDAV server.

An example of a vCard and its representation in the personal knowledge
ontology are shown in Figure 3.3 and Figure 3.4.

3.3 Calendars
Electronic calendars are databases of planned events that are useful for man-
aging schedules. Events may be past, present, or future. Email software often
incorporate electronic calendars, as the planning of appointments is an important
part of electronic communications. Along with vCard, the standard format for
address books (cf. Section 3.2), the Versit Consortium also developed vCalendar,
a file format for the exchange of calendaring and scheduling information. The
IETF later standardized iCalendar (Desruisseaux 2009), which is heavily based

46 Chapter 3. From data to personal knowledge

BEGIN:VCARD
VERSION:3.0
UID:urn:uuid:a75c0fb9-ba2a-4bf9-8272-6beda5a258c7
N:S.;Alice;;;
FN:Alice S.
ORG:Thymeflow
TITLE:CEO
TEL;TYPE=WORK:01 99 99 99 99
TEL;TYPE=CELL:07 99 99 99 99
ADR;TYPE=WORK:;;15 Place Vendôme;Paris;;75001;France
URL:http://alice.thymeflow.com/
EMAIL;TYPE=INTERNET:alice@thymeflow.com
END:VCARD

Figure 3.3: Alice’s own contact information in vCard format.

on vCalendar and the most widely used calendar format today. In particular,
iCalendar defines a transport-independent protocol for implementing workflow
for scheduling an event between multiple users using different calendaring sys-
tems. The protocol defines operations such as requesting for and replying with
free/busy time information as well as requesting, replying to, modifying, and
canceling an event (Daboo 2009). A transport in which this protocol is typically
implemented is email. Besides event and free/busy time information, iCalendar
allows the representation of to-dos and journal entries. The latter two are not
supported by all providers, and we do not consider them in this thesis. The
representation of events in iCalendar benefits from good interoperability between
different email applications as it is a requirement in business environments for
effective collaboration between users. For publishing calendar information on
the Web, hCalendar and xCal can be used, which are respectively microformat
and XML representations of iCalendar. An alternative is to use the schema.org
(using the microdata, RDFa, or JSON-LD serialization format).

As discussed in Section 2.1, calendars capture the notion of scheduled events.
An iCalendar event includes a summary, a description, an organizer, a start date,
an end date, a location, and a list of attendees. Each such event is mapped to
an instance of schema:Event, and its attributes are mapped to the appropriate
schema.org properties (cf. Section 2.2). In particular, the summary of an event
is represented using the schema:name property, and its location is represented by
a instance of schema:Place that is defined by a postal address (some text) or
some geographic coordinates.

ICalendars can be stored in files with the extension .ics. For accessing
and sharing iCalendar information on a server, CalDAV can be used (Daboo,
Desruisseaux, and Dusseault 2007), which is analogous to CardDAV in terms
of vCard sharing. CalDAV benefits from the same authoring, control, and
synchronization capabilities as CardDAV (cf. Section 3.2).

3.3. Calendars 47

@PREFIX schema: <http://schema.org/> .
@PREFIX personal: <http://thymeflow.com/personal#> .

<file:///data/contacts.vcf> {
<file:///data/contacts.vcf> personal:documentOf <http://thymeflow.com/

personal#Service/File/data/File> .
<urn:uuid:a75c0fb9-ba2a-4bf9-8272-6beda5a258c7>

schema:address [
schema:addressCountry _:a ;
schema:addressLocality [

schema:containedInPlace _:a ;
schema:name "Paris" ;
a schema:Place

] ;
schema:postalCode "75001" ;
schema:streetAddress "15 Place Vendôme" ;
a schema:PostalAddress

] ;
schema:email <mailto:alice@thymeflow.com> ;
schema:familyName "S." ;
schema:givenName "Alice" ;
schema:jobTitle "CEO" ;
schema:memberOf [

schema:name "Thymeflow" ;
a schema:Organization

] ;
schema:name "Alice Smith" ;
schema:telephone <tel:+33-1-99-99-99-99>, <tel:+33-7-99-99-99-99> ;
schema:url <http://alice.thymeflow.com/> ;
a personal:Agent .

_:a
schema:name "France" ;
a schema:Country, schema:Place .

}

{
<mailto:alice@thymeflow.com> schema:name "alice@thymeflow.com" ;

personal:domain "thymeflow.com" ;
personal:localPart "alice" ;
a personal:EmailAddress .

<tel:+33-1-99-99-99-99> schema:name "+33 1 99 99 99 99" ;
a personal:PhoneNumber .

<tel:+33-7-99-99-99-99> schema:name "+33 7 99 99 99 99" ;
a personal:PhoneNumber .

}

Figure 3.4: The representation of Alice’s own contact information (cf. Figure 3.3)
in the personal knowledge ontology (TriG syntax). The source is a file called
/data/contacts.vcf.

48 Chapter 3. From data to personal knowledge

BEGIN:VCALENDAR
PRODID:-//Thymeflow//Thymeflow Calendar 1.0//EN
VERSION:2.0
CALSCALE:GREGORIAN
METHOD:PUBLISH
BEGIN:VEVENT
DTSTART:20170103T180000Z
DTEND:20170103T190000Z
DTSTAMP:20161222T131058Z
UID:20161222T131058Z-ba2a-4b9-8272@thymeflow.com
CLASS:PUBLIC
DESCRIPTION:Demo & Discussion & Drinks
LOCATION:Le Bristol Paris
SEQUENCE:0
STATUS:CONFIRMED
SUMMARY:Thymeflow meetup
TRANSP:OPAQUE
ORGANIZER;CN=Alice S.:mailto:alice@thymeflow.com
ATTENDEE;CN=Bob E.:mailto:bob@example.com
ATTENDEE:mailto:carol@thymeflow.com
END:VEVENT
END:VCALENDAR

Figure 3.5: Alice’s calendar in iCalendar format.

An example of an iCalendar and its representation in the personal knowledge
ontology are shown in Figure 3.5 and Figure 3.6.

3.4 Social networking services

Social networking services are online platforms where users publish service-specific
profiles, build social networks by connecting with other users, and submit content
such as photos, posts, and comments, which they share with their networks.
Notable examples include Facebook, Google+, Twitter, LinkedIn, Qzone, Insta-
gram, and VK. Unlike email, which is decentralized and whose implementation is
based on open standards, major social network services centralize information
from their users in a single proprietary platform and provide web-based and/or
mobile-based user interfaces with this platform. These interfaces are intended
to be used by the end-user and are not suited for the automated extraction of
user information. However, most major social networking services also provide
documented and publicly accessible programmatic web interfaces (web APIs) that
provide access to the user information on their platforms and are meant to be
used by third-party developers to develop all kinds of applications. Facebook is

3.4. Social networking services 49

@PREFIX schema: <http://schema.org/> .
@PREFIX personal: <http://thymeflow.com/personal#> .

<file:///data/calendar.ics> {
<file:///data/calendar.ics> personal:documentOf <http://thymeflow.com/

personal#Service/File/data/File> .

<urn:uuid:5a9b71b0-9d6a-38bb-a22b-926328808107>
schema:attendee <urn:uuid:28691712-a54f-3f2f-ae59-4fd3adddbc87> ;
schema:description "Demo & Discussion & Drinks" ;
schema:endDate "2017-01-03T20:00:00.000+01:00"^^xsd:dateTime ;
schema:location [

schema:name "Paris" ;
a schema:Place

] ;
schema:name "Thymeflow meetup" ;
schema:organizer <urn:uuid:fa6b49fd-9b1f-32ce-b05f-ffcddf64c353> ;
schema:startDate "2017-01-03T19:00:00.000+01:00"^^xsd:dateTime ;
a schema:Event .

<urn:uuid:fa6b49fd-9b1f-32ce-b05f-ffcddf64c353> schema:email <mailto:
alice@thymeflow.com> ;

schema:name "Alice S." ;
a personal:Agent .

<urn:uuid:28691712-a54f-3f2f-ae59-4fd3adddbc87> schema:email <mailto:
bob@example.com> ;

schema:name "Bob E." ;
a personal:Agent .

}

{
<mailto:alice@thymeflow.com> schema:name "alice@thymeflow.com" ;

personal:domain "thymeflow.com" ;
personal:localPart "alice" ;
a personal:EmailAddress .

<mailto:bob@example.com> schema:name "bob@example.com" ;
personal:domain "example.com" ;
personal:localPart "bob" ;
a personal:EmailAddress .

}

Figure 3.6: The representation of Alice’s calendar (cf. Figure 3.5) in the
personal knowledge ontology (TriG syntax). The source is a file called
/data/calendar.ics.

50 Chapter 3. From data to personal knowledge

one such service that we consider in our implementation.

With 1.79 billion monthly active users worldwide in September 2016, Facebook
is one of the largest social networking services (Facebook 2016a). The web API
that Facebook provides is called the Facebook Graph API (Facebook 2016[b]).
To use it, the developer of an application needs to register the application with
Facebook. Then the application has to implement an OAuth authorization flow
(Mayrhofer and Spanring 2010), which allows Alice to grant the application
access to her information on Facebook without giving her account credentials to
the application (e.g., her Facebook’s password). This authorization allows the
application to access the user’s profile information (e.g., her name, date of birth,
or hometown), events that she is interested in, is attending, or has attended, and
her photo albums, posts, status updates, and conversations, as well as any other
information that is connected (e.g., places, likes, photos, or videos). The API
has its limitations, however. First, due to privacy concerns, Facebook no longer
allows an application to access certain parts of Alice’s personal information that
is about users that have not explicitly authorized the application (Constine 2015).
For example, the application cannot read the contents of a photo album or a
status update posted by a friend of Alice who has not authorized the application.
These elements, which are accessible to Alice via the human web interface, may be
considered to be part of Alice’s personal information, as per the definition given in
Section 1.1, since Alice may experience (view) them at some point. Second, as of
July 2015, the API no longer allows access to the user’s message inbox (Facebook
2017), which is definitely information directed to the user.

Despite these limitations, the API can be used to extract some useful infor-
mation, such as the list of events that the user is interested in, is attending, or
has attended, and include the description, location, dates, and list of guests of
each event. Each Facebook event is modeled by an instance of schema:Event,
similarly to how it is done for calendar events (cf. Section 3.3). Facebook events
have the advantage over iCalendar events in that they usually include more
accurate and richer information (e.g., the event’s location, list of guests, and
guest responses). Each guest of a Facebook event is represented by an application-
specific identifier and a name. Each Facebook event possesses a unique identifier
and a last-modification date, which can are useful to track changes. The API
allows events and other objects to be retrieved and created by the application,
but only those created this way can be modified or deleted. Many fields of the
user’s profile, including her profile picture cannot be changed as well. As a result,
the API does not grant complete control over the user’s information. The user
can still use the web-based user interface to perform changes that are otherwise
impossible via the API, except for changes involving information created by other
users.

An example of a Facebook event represented in the personal knowledge
ontology is shown in Figure 3.7.

3.4. Social networking services 51

@PREFIX schema: <http://schema.org/> .
@PREFIX xsd: <http://www.w3.org/2001/XMLSchema#> .
@PREFIX facebook: <https://graph.facebook.com/> .

<http://graph.facebook.com> {
<http://graph.facebook.com> personal:documentOf <http://thymeflow.com/

personal#Service/Facebook/alice@thymeflow.com/Facebook> .

facebook:165465164
schema:attendee facebook:101983248 facebook:101534565

facebook:101541549 facebook:101953327 facebook:101541541
facebook:101541568 facebook:101541237 facebook:101543035 ;

schema:name "Alice’s 25th Birthday Party" ;
schema:description "Drinks and dancing for my 25th birthday!" ;
schema:image <https://scontent.xx.fbcdn.net/1100.jpg?oh=ec30> ;
schema:startDate "2017-02-14T21:00:00+01:00"^^xsd:dateTime ;
schema:location facebook:105863085 ;
a schema:Event .

facebook:105863085
schema:address [

schema:addressCountry _:b ;
schema:addressLocality [

schema:containedInPlace _:b ;
schema:name "Paris" ;
a schema:Place

] ;
schema:postalCode "75012" ;
schema:streetAddress "46 Rue du Faubourg Saint-Antoine" ;
a schema:PostalAddress

] ;
schema:geo <geo:48.85219472,2.37266230> ;
schema:name "Barrio Latino" ;
a schema:Place .

_:b schema:name "France" ;
a schema:Country .

facebook:101983248
schema:name "Alice S." ;
schema:givenName "Alice" ;
schema:familyName "S." ;
schema:gender "female" ;
schema:image <https://scontent.xx.fbcdn.net/p50x50/134.jpg?oh=dee5> ;
a schema:Person .

}
{

<geo:48.85219472,2.37266230> schema:latitude 48.85219472 ;
schema:longitude 2.37266230 ;
a schema:GeoCoordinates .

}

Figure 3.7: The representation of a Facebook event that Alice is attending in the
personal knowledge ontology (TriG syntax).

52 Chapter 3. From data to personal knowledge

3.5 Mobile device sensors
As mentioned in Section 2.3, information about the mobile device’s physical
environment is useful for reconstructing a history of the user’s activities. Mobile
devices can gather information from different kinds of radio-based technologies:
cellular networks (e.g., GSM, UMTS, CDMA, and LTE), Bluetooth, Wi-Fi, NFC,
and satellite-based navigation systems (e.g., GPS, GLONASS, and BDS). Most of
these technologies are designed for two-way communications (e.g., for exchanging
voice, text, or media), with the exception of satellite-based navigation systems,
which are designed for (geographic) positioning. Mobile devices also embark
sensors capable of tracking motion (e.g., an accelerometer and a gyroscope),
orientation (e.g., a magnetometer), ambient sound (e.g., a microphone), ambient
air parameters (e.g., a barometer, thermometer, and an air humidity sensor),
ambient light, and user proximity (e.g., infrared and hall sensors). For collecting,
exchanging, and storing information captured by these sensors and radio-based
technologies, no uniform methods exist. However, the operating systems of most
modern mobile devices provide APIs to uniformly access data from sensors and
radio-based technologies, regardless of the underlying hardware and implementa-
tion specifics. Notable operating systems of this kind are the Android (Google
2017a), iOS (Apple Inc. 2017b), and Windows Phone (Microsoft 2017) families.

Sensor information
In this thesis, we are interested in sensors capable of tracking the user’s location:
satellite-based navigation systems and network-based positioning systems (Wi-Fi
or cellular-based); tracking her motion: accelerometers and gyroscopes; and
describing the user’s environment (e.g., indoors, outdoors, or underground) by
measuring the signal strengths of wireless network devices in range: Bluetooth
devices, Wi-Fi access points, cellular sites (towers), and satellites. We refer to
these categories of sensor information by the names locational, dynamic, and
contextual, respectively.

Locational

Mobile devices are capable of tracking the user’s (device’s) geographic location over
time using different radio-based technologies: satellite-based navigation systems
(e.g., GPS, GLONASS, and BDS), Wi-Fi, and cellular network technologies, with
varying degrees of accuracy. Satellite-based navigation systems are the most
accurate, work all over the globe, and are capable of measuring the velocity of
the device in addition to finding its position. The device’s velocity is defined
by a magnitude and a bearing, which defines the direction of movement as an
angle relative to the direction of the north-pole. The accuracy of satellite-based
positioning can be affected in areas with a partial line of sight of the sky, e.g., inside
buildings and especially underground. Wi-Fi and cellular-based positioning are
based on the identification of Wi-Fi access points and cellular sites and a mapping
of their identifiers to geographic locations. Contrary to satellite-based positioning,
Wi-Fi and cellular-based positioning can work indoors or even underground, such

3.5. Mobile device sensors 53

as inside transit tunnels. However, Wi-Fi and cellular-based positioning systems
depend on the local Wi-Fi and network infrastructure. For this reason, they
are not available worldwide and their positioning accuracy varies depending for
instance on the density of Wi-Fi access points and cell sites. The accuracy of
satellite-based positioning is in order of 10 meters, for Wi-Fi it is in the order of
100 meters, and for network-based positioning it is in the order of 1 kilometer.

The location APIs of most mobile platforms do not distinguish between
Wi-Fi and cellular-based positioning and instead only provide a network-based
positioning service which internally combines both sources of information. This
is case for the Android, iOS, and Windows Phone platforms. An application
developed for these platforms can request the current location or register to
location updates (either periodic or triggering after the device has moved a
certain distance from the previous location). Occasionally, the device may be
unable to determine its position, in which case updates may not come as often
as requested. A location has a timestamp, a set of geographic coordinates (i.e.,
a latitude, longitude, and an optional altitude), an accuracy and an optional
velocity (defined by a magnitude and a bearing). The accuracy of a location is
defined by a radius, in meters, within which the system has a 68% confidence
that the device is located. Assuming that the error is normally distributed, this
radius roughly corresponds to one standard deviation.

Dynamic

The accelerometer of a mobile device measures the device’s proper acceleration,
that is, the physical acceleration experienced by the device relative to free fall (free
fall is the device’s motion where gravity is the only force acting upon it). Because
of this, when the device is at rest on the surface of the Earth, the accelerometer
approximately indicates an upward acceleration that is equal in magnitude to
Earth’s gravity. The measured acceleration is expressed as a vector in a three-
dimensional Cartesian coordinate system with axes fixed to the device’s frame.
The gyroscope of a mobile device measures the device’s angular velocity. The
measured angular velocity is a three-dimensional vector indicating the device’s
rate of rotation around each of the axes in the acceleration’s coordinate system.
The measurement frequencies of the accelerometer and the gyroscope range from
tens to hundreds of hertz. These sensors are useful in applications where the user
interacts through motions and gestures, e.g., by tilting, shaking, or rotating the
device. Also, since these sensors indirectly measure the user’s motion, they can
also be used to recognize the user’s activity, as we will see in Section 5.8. Some
mobile devices also embed a magnetometer, which is a sensor for measuring the
magnetic field. Measurements by the accelerometer, gyroscope, and magnetometer
can be combined to obtain an accurate estimation of the device’s orientation with
respect to the Earth’s surface. Combining sensor data in such way is an example
of sensor fusion, which is a subset of information fusion (cf. Section 2.3). The
estimated orientation can then be used to represent the proper acceleration of
the device with respect to the ground.

By design, the personal knowledge ontology presented in Section 2.2 is not
able to represent sensor measurements by an accelerometer, a gyroscope, or a

54 Chapter 3. From data to personal knowledge

magnetometer. Such measurements are too low-level to be directly related to the
dimensions that the ontology aims to capture (i.e., who? what? when? where?
etc.). In Chapter 5, however, we show how these sensor measurements can be
used to derive the user’s mode of transportation, which is closer to what the
ontology aims to capture.

Contextual

Some information about the user’s environment can be inferred from the measured
signal strengths of in-range devices for the different radio-based technologies listed
at the beginning of this section. Signal reception depends on whether the user
is in a building, underground, or outside in an open-field, and varies depending
on the technology. For instance, satellite-based navigation reception is low or
inexistent underground and Wi-Fi is abundant indoors. For some technologies,
the measured signal strength may vary over the course of the day in a single
place. For example, persons may carry Bluetooth-enabled devices with them
(e.g., smartwatches and smartphones), and so the number of detectable Bluetooth
devices at any given point may be used to estimate the number of people around
it.

Similarly to the modeling of dynamic sensor information, contextual infor-
mation was intentionally not captured by the personal knowledge ontology. In
Chapter 5, we show how to use it to derive the user’s mode of transportation.

Applications
To collect the different kinds of sensor information previously presented, we
developed two mobile applications: Thymeflow mobile and Hup-me mobile. We
now present them.

Thymeflow mobile

Thymeflow mobile is an Android and iOS application that we developed to collect
a history of the user’s location. The resulting location history is a time-ordered
sequence of locations visited by the user over the course of time. A location history
application typically runs forever in the background, periodically collecting and
storing the location either locally (on the device) or on a distant server. By default,
Thymeflow mobile collects the user’s location every minute, stores it locally, and
uploads every hour the new locations to a distant server that the user controls.
The distant server runs Cozy (Cozy Cloud 2016), an open-source personal cloud
platform. The application generates a unique identifier to the device it runs
on, which it attaches to every collected location. Locations are formatted as
JSON objects and uploaded to Cozy, which stores them in a CouchDB (The
Apache Software Foundation 2017a) database, which is a JSON-based document
store. The user can then query the database to retrieve the locations in a given
time-range, and in particular visualize the locations for a given day.

For managing a location history, as for mobile device sensor data in general, no
standardized method exists. However, there exist other location history applica-

3.5. Mobile device sensors 55

tions for Android, such as Google Timeline and Location History (Google 2015b),
GPS Logger (Mendhak 2011), Moves (ProtoGeo 2013), and OpenPaths (The
New York Times Company 2012). Google Timeline is usually installed with the
Android platform by default. Locations are stored on Google servers and attached
to the user’s Google account and the user can browse her location history using
the web and mobile interfaces. However, Google does not provide a public API
to retrieve the user’s location history. The user can only manually download a
full dump of her location history, which is not efficient for managing updates.
Moves is similar to Google Timeline except that Moves provides a public API to
query the user’s history of locations and activities. The OpenPaths’s application
functions likes Moves, except that it does minimal processing and does not provide
a history of the user’s activities. GPS Logger, on the other hand, directly stores
the locations on the device in GPX, KML, or CSV format. GPX and KML are
XML-based formats for exchanging GPS data and generic geographic information,
respectively. GPS Logger can periodically send the saved files to the user’s email
address, or upload them to a FTP server or a cloud storage provider such as
DropBox, OwnCloud, or Google Docs. Locations can also be directly logged
by issuing an HTTP request to a custom URL or a OpenGTS (GeoTelematic
Solutions, Inc. 2017) server.

Thymeflow mobile is different from the applications above in the following
aspects:

1. Contrary to Google Timeline, locations are stored in a database which the
user can freely query.

2. Google Timeline can be installed on multiple devices with the same Google
account. However, when the user exports her Google’s location history,
locations are not associated with devices, which makes it difficult to process
the location history when the user has multiple devices and does not always
travel with all of them (e.g., when she leaves her tablet at home). In
Thymeflow mobile, device identifiers make it possible to distinguish between
the different device traces.

3. Different from Moves and OpenPaths, locations are stored in a platform
that the user fully controls.

4. Different from OpenPaths, our application also registers the reported accu-
racy of a location.

5. Different from GPS Logger, we used an implementation of a location request
manager which trades-off some accuracy in exchange of improved battery life
by automatically switching between satellite and network location providers
depending on various circumstances.

Implementation Thymeflow mobile was developed in C# using the Xamarin
framework (Xamarin Inc. 2017). Xamarin is an open-source framework for
developing cross-platform mobile applications while sharing code across multiple
platforms. The application was developed for the Android and iOS platforms.

56 Chapter 3. From data to personal knowledge

(a) Unregistered. Tracking is off. (b) Registered. Tracking is on.

Figure 3.8: Thymeflow mobile possible states: Initially, the application is not yet
registered to the Cozy server and tracking is off. Once registered, tracking can be
either on or off.

The shared code base includes the user interface, configuration manager, location
storage (in a SQLite databse), and location uploader (as a Cozy client). Specific
to each platform is the code to collect locations: periodically waking up the device
and issuing a location request to the appropriate sensor. For Android, we use
Google Play Services’s location manager (Google 2017c) For iOS, we use iOS’s
native location manager (Apple Inc. 2017a). The requested location accuracy is
about 100 meters.

The application has three states (Figure 3.8). Initially, no Cozy server is
registered and tracking is off. Once registered, tracking can be turned on or off.
The location request period and the upload period can be changed (Figure 3.9).
The location request period is ignored in the iOS version of the application since
the frequency of background location updates is subject to platform constraints.

Hup-me mobile

Hup-me mobile is an Android application that we developed to collect locational,
dynamic, and contextual sensor information from traveling users. Contrary to

3.5. Mobile device sensors 57

Figure 3.9: The configuration panel of Thymeflow mobile. The device identifier is
displayed. The location request period and upload period can be configured.

Thymeflow mobile, the application was not designed for the end-user. Instead,
it was designed to collect mobile sensor data from multiple users willing to
participate in the activity and transportation mode recognition experiments that
we present in Chapter 5. After the application has collected data about some trip
and stored it on the device, a user that chooses to participate can anonymously
upload this data to a server that we provided for these experiments. Because
Hup-me mobile collects information from many more sensors and does so at a
higher frequency (e.g., satellite location updates are requested every second)
than Thymeflow mobile, Hup-me mobile consumes considerably more power than
Thymeflow mobile. However, contrary to Thymeflow mobile, Hup-me mobile’s
data collection is limited to certain periods of time over the course of the user’s
day: moments where she travels from one place to another. To do so, users have
to manually trigger the collection of data when they start traveling, and stop
it when reach their final destination. Besides preserving battery, this has the
advantage of reducing the amount of data that is uploaded and that we need to
process. Another advantage is that users participating in our experiment have
control over what information is collected about them.

58 Chapter 3. From data to personal knowledge

A period of time over which sensor data was collect for a user is called a
journey. Sensor data for a journey is stored in tabular format in the device’s
local file-system as a set of CSV files. Each sensor generates its own CSV file,
where each row corresponds to one measurement. Every CSV file has a “time”
column that represents the time of each measurement. Each journey is stored
in its own folder. Along with CSV files, a JSON file is also saved that contains
information about the collection and the device: the device’s model, operating
system’s version, sensors’ hardware specifications, application version, collected
sensors, journey start and end times. Finally, in addition to the sensors previously
presented, the application also logs the battery status of the device, i.e., whether
the device is charging and the remaining battery percentage, as well as whether
the screen is on. The screen status sensor (called the interactivity sensor) helps
us know whether the user is currently using the device at any given moment.

Clock synchronization One difficulty when collecting information from dif-
ferent kinds of sensors is dealing with clock synchronization. Low-level sensors
such as the accelerometer or the gyroscope operate on high resolution clocks that
correctly measure the elapsed time from the beginning of a journey (from the
beginning of data collection) but do not necessarily relate to a standard time
such as Coordinated Universal Time (UTC). The exact specifications of these
clocks are implementation dependent. On the other hand, the system clock of the
device is synchronized to UTC but does not have as much resolution. Also, the
system clock may occasionally jump backwards or forwards when the clock goes
out of sync with UTC and it is resynchronized using some clock synchronization
networking protocol (e.g., the Network Time Protocol). Finally, satellite-based
navigation systems keep their own clock, which may be used to represent the
times associated with location measurements. The times associated with these
locations have the advantage of being highly accurate (with respect to the navi-
gation system’s clock), since clock synchronization is a requirement for proper
satellite-based positioning.

During the development of Hup-me mobile, we progressively realized that the
best way to have comparable measurements between different sensors is to collect
for each sensor the time from the clock that measures elapsed time the most
accurately for this sensor. Elapsed time is guaranteed to be monotonic and to
continue ticking even when the device is idle. To be able to synchronize the times
between different types of measurements, the average time difference between
the elapsed time clock of each sensor and a universally available elapsed time
clock has to be computed. Android implements one such clock that measures the
elapsed time since boot in nanoseconds. Finally, UTC time should be measured
at the beginning of data collection so as to be able to relate all sensor time
measurements to UTC. When the goal is infer the user’s transportation mode
from these sensor measurements, this synchronization is needed for making use
of transit schedules. For a high-level sensor measurement for which no elapsed
time clock is provided for the sensor by the system (e.g., the signal strengths of
Wi-Fi devices in range or the signal strength of the cellular network), the device’s
elapsed time since boot can be retrieved at the moment the application collects

3.6. Related work 59

the measurement. Since location updates can be received by the application some
time after they were acquired, it is important to use the (sensor) time provided
with the measurement. Additionally, since version 4.2, Android’s API allows us
to reliably retrieve the elapsed time since boot of a location measurement. For
older versions, the time is given by the internal clock of the positioning system.
For satellite-based positioning, this is accurate, while for network it is not. For
low-level sensor measurements (e.g., accelerometer or gyroscope measurements),
which are of high frequency, the sensor’s internal clock should be used.

In Hup-me mobile we did not initially implement all the of the above suggested
practices. We did so for low-level sensor measurements, but did not for location
data, and most of the other measurements were done using the system’s UTC clock.
Therefore, we later designed and implemented a procedure to synchronize the
times of satellite-based location measurements collected this way with the other
sensor measurements, and manually verified the result of this synchronization
during our experiments.

Implementation The application was developed in the Scala (EPFL 2017)
programming language using the Android SDK. The user can start and stop the
collection of data by tapping the “Start” and “Stop logging” buttons (Figure 3.10).
When the application is logging a journey, the device is kept awake. The frequency
of measurements varies from one sensor to another (Figure 3.11). Some sensors,
such as “Phone Status”, only pick up measurements when detecting a change of
state. Others, such as “Satellite Navigation”, pick up measurements at a fixed
rate (e.g., once per second), regardless of the estimated state. The set of logged
sensors can be configured (Figure 3.12).

3.6 Related work

In data warehousing, the process by which data is moved and transformed from
one or multiple data sources into a target data store is referred to as Extract-
Transform-Load (ETL) (Vassiliadis 2009). ETL is typically performed in a
periodic fashion, so that the target store keeps up with changes in the data
sources. In data migration, i.e., where the sources are to be decommissioned and
the target store is to bound to completely replace them, ETL tools can be used,
although the full range of problems dealt by ETL is usually not encountered
in migration projects. Data warehousing is one approach to data integration
(cf. Section 2.3). The ETL process has three stages: extracting data from
the sources (data extraction), transforming the data into the target schema and
format (data transformation), loading of the transformed data into the appropriate
location of the target data store (data loading). Each of these stages presents
unique challenges. For instance, data extraction may entail the implementation of
differential snapshots to reduce the communication overhead. Data transformation
is concerned with modeling and implementing data mappings, managing lineage
(i.e., identifying the origin and transformations of the target data), and data
cleaning (i.e., removing inconsistencies, duplicates). Data loading has deal with

60 Chapter 3. From data to personal knowledge

(a) Ready to start logging. (b) Logging: no location has been
acquired yet.

(c) Logging: a location has been
acquired.

(d) Logging has stopped.

Figure 3.10: The main panel of Hup-me mobile: the user can manually start and
stop the collection of data. A journey is created each time logging starts.

3.6. Related work 61

Figure 3.11: Sensor measurement metrics in Hup-me mobile: for each logged
sensor the application displays the number of measurements performed by this
sensor thus far.

performance issues, e.g., bulk loading and index maintenance. Overall, ETL
processes have to be resilient: resumption after failure, and exception handling
and reporting, while maintaining coherence in the target store.

In our setting, many tools exist for the extraction and transformation of
Email, vCard, iCalendar, and Facebook data into RDF. The W3C maintains a
list of such tools (W3C 2017). Some of these tools represent knowledge using the
FOAF (Brickley and Miller 2014), Semantically-Interlinked Online Communities
(SIOC) (Uldis and Breslin 2010), and schema.org ontologies. These tools do not
commonly handle mobile sensor data, as sensor data collection tools and formats
are less standard and are usually integrated within a larger application that only
outputs a transformed result (Lane et al. 2010). Regardless, Open Geospatial
Consortium’s Sensor Web Enablement has produced a series of standards to
describe and manage sensors, their observations, and sensing processes. One of
such standards is SensorML (Mike and Robin 2014). The W3C’s Semantic Sensor
Network Incubator Group have extended these standards to the Semantic Web
by proposing the Semantic Sensor Network ontology (Lefort, Henson, and Taylor

62 Chapter 3. From data to personal knowledge

Figure 3.12: Hup-me mobile: The user can configure the list of logged sensors.

2011). However, these standards are primarily aimed at large-scale deployments
of sensor networks, and we are not aware of a user-oriented mobile sensing
application using them.

Chapter 4

Spatiotemporal knowledge: Stay
extraction

The algorithm described in this chapter has been integrated into the
personal information management system that we present in Chap-
ter 6.

As presented in Section 2.3, one of our goals is to recreate Alice’s history of
activities from mobile device sensor data. In this chapter, we describe a process
that uses this data to find Alice’s stays and moves (Section 2.2). This process is
called stay extraction.

4.1 Introduction

Stay extraction is the task of finding non-overlapping periods of time where Alice
has remained in one place, and determine these places. Formally, the goal is to
find, given a time interval I = [start, end] and a set of observations O over this
interval, a sequence of stays (Si)1≤i≤n = (si, ei, πi, αi)1≤i≤n, where for each i, πi
is the center (a geographic point), αi is the accuracy, and [si, ei] ⊂ I is the time
span of the stay Si. Additionally, the non-overlapping condition requires that for
all i ≥ 2, ei−1 ≤ si.

To determine these periods, one could imagine using various sources of sensor
information. A natural source for this information is her location history. Many
users may already possess a location history, perhaps unknowingly, as they are
very easy to collect and many applications exist to do so (cf. Section 3.5). For
these reasons, we use Alice’s location history for the stay extraction task.

This chapter is structured as follows. In Section 4.2, we formalize the notion of
a location history, illustrate it with visualizations, and present different clustering
strategies. In Section 4.3, we introduce Thyme, a stay extraction algorithm that
we designed. Section 4.4 discusses an evaluation of this algorithm. We then
present some related work and conclude this chapter.

63

64 Chapter 4. Stay extraction

4.2 Location history
As presented in Section 3.5, a location history is a time-ordered sequence of
locations. Formally, it can be modeled as a sequence (li)1≤i≤T = (ti, pi, ui)1≤i≤T ,
where for each i, ti is the time, pi is the geographic point and ui is the accuracy
of the location li. Additionally, for all i > 2, we have ti < ti+1.

Visualization
To understand the nature of location histories, we start by describing how they
can be visualized. One simple way of visualizing a location history is to project
its points on a map, possibly connecting time-consecutive locations with lines, as
shown in Figure 4.1. To represent time, a third axis can be added, making the
visualization three-dimensional. This is known as the “space-time cube” (Kraak
2003). Another way is to color points on the 2D visualization according to the
time of the location that they represent, using for instance a gradient color scale
based on the hue. To be meaningful, these visualizations rely on not having to
represent too many locations, i.e., on the representation of a short period of time
(e.g., a day). For the 3D visualization, the map is only shown at the bottom
of the cube, making it hard to read the spatial dimension if the history is too
complex. When using the flat visualizations to represent long histories, too many
points may end-up being stacked over each other, masking the readability of the
time dimension (color and/or connectivity). Being able to filter over the time
dimension of the location history is thus necessary. While simple time range
filters might work, more elaborate methods exist for navigating through time and
space (Thudt, Baur, and Carpendale 2013).

Spatial clustering
When visually inspecting Alice’s location history (Figure 4.1), we may notice
certain clusters of points. We can make them explicit by agglomerating points
that are close to each other into clusters and indicating the number of points
forming each cluster on the map, as shown in Figure 4.2. Figure 4.3 shows a
detailed view of the locations in the bottom-left part. Assuming that locations are
uniformly distributed over the course of the analyzed period, the number of points
around a certain area is indicative of the total amount of time that Alice spent in
that area. Thus, to perform stay extraction, one could imagine performing spatial
clustering on the geographic points of the set of analyzed locations. However,
as shown by Kang et al. (2004), this does not work so well. To understand this,
one could see spatial clustering as grouping close points together whereas stay
extraction is more about separating points into two categories, i.e., distinguishing
points belonging to stays from those belonging to moves. Because point density
is related to the total amount of time Alice spent in an area, spatial clustering
tends to detect places that Alice frequently visits or passes by rather than places
where she stayed. Specifically, for spatial clustering to work, it would have to
deal with:

4.2. Location history 65

Figure 4.1: Points in Alice’s location history for a particular day.

66 Chapter 4. Stay extraction

Figure 4.2: Spatial clusters detected in Alice’s location history for a particular
day, represented as blue circles. The number inside each circle indicates the
number of points (locations) within the cluster.

Move clustering Points along routes that Alice frequently takes (e.g., the route
she takes to go to her workplace every day) tend to form spatial clusters
over time.

High connectivity The distance between time-consecutive points is roughly
equal to the product of Alice’s speed and the time between measurements.
For relatively high measurement frequencies, stays are not spatially isolated
points but appear to be “connected” via the move points in between them.

Varying densities There are significantly fewer points around a place that Alice
visited only once (e.g., a restaurant in another town) than around a place
where she goes all the time (e.g., home).

Missing locations The assumption that locations are uniformly distributed over
the time-axis might not be verified when the device is unable to pinpoint
its position over an extended period of time (e.g., when Alice is indoors or
underground).

4.2. Location history 67

A

B

Figure 4.3: A detailed view of two spatial clusters in Alice’s location history.

Time-based clustering
An alternative is to extract stays by sequentially scanning locations over the time
axis. The idea is to keep track of Alice’s position over time and detect when she
starts moving. Such a method does not have to deal with the aforementioned
difficulties encountered by spatial clustering. In particular, the time spent in a
particular place can be monitored and used to counter the density and connectivity
issues encountered by spatial clustering. The uniform distribution of locations
over the time-axis is no longer a requirement. However, missing locations are a
problem for detecting stays when the user is able to move significantly and stay
for a long period of time in a place where the device cannot find its position (e.g.,
a shop inside a mall or a room in a large underground complex).

Other difficulties still remain:

Outliers The mobile device can report an erroneous distant location over a short
period of time while the user stays in one place. The stay for such place
should not be split.

Location uncertainty The accuracy of locations varies over a large range (cf.
Section 3.5): not all positioning technologies are available at all times and
the device might intentionally trade-off accuracy in exchange of improved
battery life. For this reason, inaccurate locations should be used as much
as possible when nothing else is available instead of simply dropping them.

To illustrate the extent of location inaccuracy, we show in Figure 4.4 the same
points as in Figure 4.1, but we indicate the accuracy of each point by drawing a

68 Chapter 4. Stay extraction

Figure 4.4: Point accuracies in Alice’s location history for a particular day. The
blue circles are the points, and the black circles indicate the accuracy of each
point. The ground radius of a black circle represents the point’s accuracy.

black circle whose ground radius is equal to the point’s accuracy. In the following
section, we present Thyme, a stay extraction algorithm that attempts to deal
with these issues.

4.3 Thyme, the stay extraction algorithm

In this section, we provide a detailed description of Thyme, a time-based stay
extraction algorithm. The algorithm sequentially scans the locations (li)1≤i≤T ,
while maintaining a set of clusters C in which locations are inserted. C is
initially empty. Each location li is added to an existing cluster in C ∈ C if it is
geographically close (i.e., d(li, C) < λ) and if there exists a location lj ∈ C that
is recent (i.e., j = i− 1 or ti − tj < θ). If multiple clusters verify this condition,
the location is added to the most recent cluster (i.e., the cluster containing
the location with the highest index in the sequence). If no clusters verify this
condition, a new cluster {li} is created and added to C.

Location uncertainty is taken into account by the function d that measures
the distance between a location and a cluster. To do so, we represent a location
li as a two-dimensional unimodal normal distribution Pi ∼ N (µi, u2

i) where the

4.3. Thyme, the stay extraction algorithm 69

expectation µi = (xi, yi) represents pi in a projected coordinate system and the
standard deviation is equal to ui. The assumption of a normally distributed error
is typical in the field of processing location data (cf. Section 3.5).

A cluster C = {lr1 , . . . , lrn} is also represented by a normal distribution
P (C) ∼ N (µ, σ2). µ is the weighted arithmetic mean of the locations’ projected
coordinates1 (xri , yri) weighted by their inverse accuracy squared 1/u2

ri
. The

variance σ2 is the harmonic mean of location accuracies squared 1/u2
ri
.

µ =
n∑
i=1

(xri , yri)
u2
ri

(
n∑
i=1

1
u2
ri

)−1

σ2 =
(

n∑
i=1

1
u2
ri

)−1

In particular, for a cluster consisting of a single location li, P ({li}) is equal to
the location’s normal distribution Pi.

To define d, we use the Hellinger distance (Hellinger 1909), a statistical
distance used to quantify the similarity between two probability distributions.
For two normal distributions P1 ∼ N (µ1, σ

2
1) and P2 ∼ N (µ2, σ

2
2), the squared

Hellinger distance is equal to:

H2(P1, P2) = 1−
√

2σ1σ2

σ2
1 + σ2

2
e
− 1

4
δ(µ1,µ2)2

σ2
1+σ2

2 ∈ [0, 1],

where δ(µ1, µ2) is the geographical distance between cluster centers. Finally, the
distance d(l, C) between a location l and a cluster C is defined by:

d(l, C) = max
k∈C∪{l}

H(P ({k}), P (C ∪ {l})).

The location l is added to C when d(l, C) is below a certain threshold λ. This
distance takes into account the overall uncertainty of points that form the cluster,
making it tolerant to measurement variability and potential outliers. The time
span of a cluster is defined by the time interval between the oldest and most
recent location in the cluster: T (C) = [minli∈C ti,maxlj∈C tj].

Output When θ = 0, each iteration of the above procedure either merges li
into the most recent cluster (i.e., the one with li−1), or creates a new singleton
cluster {li}. Thus, when θ = 0, the procedure creates a non-overlapping sequence
of clusters over the time-axis. In this case, each cluster C that lasts more than a
certain time threshold τ (i.e., whose time span length is greater than τ) defines a
stay. The mean and standard deviation of P (C) defines the center and uncertainty
of the stay. The resulting sequence of stays is the output of Thyme. The result
of running Thyme on Alice’s location history is shown in Figure 4.5.

Filtering locations from multiple devices Sometimes, the user’s location
history may come from multiple devices, e.g., a telephone and a tablet. As
discussed in Section 3.5, this may be problematic if each location is not associated
with the device that generated it using for instance a device identifier. For

1The locations’ geographic coordinates are projected on an Euclidian plane locally approxi-
mating distances and angles on Earth around some location in C (e.g., lr1).

70 Chapter 4. Stay extraction

Figure 4.5: The result of running Thyme on Alice’s location history for a particular
day (λ = 0.95, τ = 15 min). In the top figure, circles represent stays (i.e., clusters
longer than 15 minutes), and the number inside each circle indicates the stay’s
position in chronological order. Consecutive stays are connected by a line formed
by the sequence of clusters in-between, yielding simpler lines than those in
Figure 4.1. The bottom figure gives the times and duration of each stay and
move. For each move, the traveled distance and average speed are also given.

4.4. Evaluation 71

example, if the user leaves her tablet at home while she goes to her workplace,
the location history may look as if she were “going back and forth” from home
to her workplace multiple times over the course of the day. Google Timeline is
subject to this issue. To counter it, we devised a location filtering algorithm that
attempts to fix this problem by assuming that locations may come from up to
two devices: one device that the user carries with her at all times, and one which
may or may not be with her. The latter device is assumed to be static when the
user is not carrying it.

To do so, we first run Thyme with θ = θf > 0, and filter out clusters shorter
than a certain time threshold τ = τf . This results in possibly time-overlapping
clusters. Some of these overlaps may represent moments where the user was at
her workplace while her secondary device (e.g., her tablet) stayed at home. Then,
a trellis2 is generated from the sequence of locations. The n-th time slice in the
trellis represents the n-th location in the sequence. The time slice representing
location l consists of nodes representing one of the following three kinds of states:

1. Both devices are in location l.

2. l is the location of the device carried by the user. The secondary device is
located in a cluster C that spans over a period that includes l.

3. l belongs to a cluster C. The location of the secondary device is l. The
latest location in which the device carried by the user was located is l′ (l′ is
before l in the location sequence).

Edges are weighted in part by the distance that the user needs to travel to go
from one state to another. For instance, when going into a state of type 3, the
user does not move (she stays at a location l′). When going into a state of type
1 from a state of type 1, the distance between the locations of each state is the
distance traveled. The minimum weight path from the earliest time slice to the
latest represents the path traveled by the user. States of type 3 are filtered out,
yielding a sequence of filtered locations. To extract stays, Thyme can be run
once again on the filtered locations with θ = 0. In our experiments we set θf to
600 min and τf to 15 min for the filtering part. An illustration of this problem,
and the impact of this filter is shown in Figure Figure 4.6.

4.4 Evaluation
We evaluated Thyme’s stay recognition performance on the location history of a
user, Bob, who had continuously collected his location over about 5 years. For
the collection, he used the Google Timeline and Location History application
presented in Section 3.5 and provided us a dump of his location history. Bob
annotated 15 randomly chosen days (among 1676) in his location history. For
each day, Bob was presented with an interface showing the raw locations of

2A trellis is a graph whose nodes are partitioned into a set of time slices, ordered by time,
and whose edges are pairs of nodes in adjacent time slices. The earliest and latest time slices in
the trellis only have one node.

72 Chapter 4. Stay extraction

(a) No multi-device filter has been applied. The movement is erratic and goes back and forth
from Alice’s workplace to some distant place (stays 3 to 9).

(b) The multi-device filter has been applied. The movement is smooth.

Figure 4.6: The stays extracted by Thyme from Alice’s location history during a
period when Alice had left her tablet at her workplace in Singapore (stay 5 in
Figure 4.6b) while she traveled abroad.

4.5. Related work 73

Method #D DΘ Prec. Recall F1
Thyme15 33 % 0.6 % 91 % 98 % 95 %
Thyme10 46 % 0.9 % 83 % 98 % 90 %
Thyme5 63 % 1.0 % 62 % 100 % 77 %
Google 18 % N/A 88 % 89 % 88 %

Table 4.1: Stay extraction evaluation on Bob’s dataset.

each day on a map, as well as the output of Thyme for a λ of 0.95, and for
which he varied the stay duration threshold τ (5, 10, and 15 minutes). Since
Bob locations come from a smartphone and tablet, we ran the location filtering
procedure presented at the end of Section 4.3. For each day, Bob counted the
number of stays that he thought were true, false, or missing. He also evaluated
the stays extracted by his Google Timeline. The exact definition of an actual
stay was left to Bob, and the reliability of his annotations were dependent on his
recollection. In total, Bob found 64 actual stays. Among the true stays output
by each method, some appeared multiple times. Consequently, we counted the
number of true stay duplicates and their resulting move duration. For instance,
an actual stay of 2 hours appearing as two stays of 29 and 88 minutes with a short
3-minute move in-between, would count as 1 true stay, 1 duplicate, and 3 minutes
of duplicate duration. Table 4.1 shows the resulting precision and recall for each
method, as well as the duplicate ratio #D (the ratio of the number of duplicates
to the number of true stays) and the duplicate duration ratio DΘ (the ratio of
the duplicate duration to the total duration of true stays). Figure 4.7 shows an
example of a journey that Bob evaluated. Overall, our technique products results
comparable to Google Timeline for stay extraction, with better precision and
recall, but a tendency to produce duplicates.

4.5 Related work
Stay extraction The stay extraction problem is not new. While they are
sometimes referred to as visits (Lv, L. Chen, and G. Chen 2012) or places
(Ashbrook and Starner 2003a), the terms stays or stay points remain the most
widely used ones (Kang et al. 2004; Hariharan and Toyama 2004; Li et al. 2008;
Nishida, Toda, and Koike 2015). As noted by Nishida, Toda, and Koike (2015),
state-of-the-art algorithms derive stays by scanning the location sequence in order.
Among them, variations of time-based clustering (Kang et al. 2004) have been
widely utilized (Hariharan and Toyama 2004; Li et al. 2008; Lv, L. Chen, and G.
Chen 2012). Time-based clustering algorithms regard consecutive locations within
a certain distance from each other as candidate stays, and consider for stays
those longer than a certain duration threshold. Kang et al. (2004)’s algorithm
keeps track of one cluster at a time, and either incrementally adds new locations
to it or drops it to consider an entirely new cluster. In an attempt to alleviate
the “discontinuous GPS sampling problem”, Lv, L. Chen, and G. Chen (2012)
extended Kang et al. (2004)’s algorithm by making it track a second cluster that

74 Chapter 4. Stay extraction

Figure 4.7: On the left, the result of running Thyme on a day in Bob’s location
history (λ = 0.95, τ = 15 min). On the right, the result given by Google Timeline.
Thyme found three duplicate stays (stays 2, 5, and 6), while Google only found
one duplicate (stay 2). On the other hand, Google found two false stays (an
11-minute and a 22-minute stay) around the lake next to stay 3. When adjusting
τ , Thyme also finds the 11-minute stay but never the 22-minute stay.

is possibly later merged with the first cluster based on the time and geographical
distance between both clusters. Nishida, Toda, and Koike (2015)’s algorithm
goes a little further: For each location l, a cluster is formed from the locations
in l’s temporal vicinity that are also within a small geographical distance of l.
Time-overlapping clusters are merged, yielding stay regions instead of stay points.
Thyme is similar to (Kang et al. 2004)’s algorithm, except that it uses a different
location-cluster distance and different merge functions. Thyme has also been
adapted to process locations collected from two devices without device identifiers.

Significant places Stays extracted from a location history can be used to
derive significant places. A significant place is collection of stays representing the
same place (e.g., home, the user’s workplace, or the gym) (Ashbrook and Starner
2003a; Hightower et al. 2005; Adams, Phung, and Venkatesh 2006; Li et al. 2008;
Lv, L. Chen, and G. Chen 2012). For deriving significant places, classic spatial
clustering methods (cf. Section 4.2) can be applied on the set of stays. This
derivation has been used to compare and recommend places to multiple users (Li
et al. 2008), for modeling and prediction (Ashbrook and Starner 2003a; Adams,
Phung, and Venkatesh 2006; Liao 2006), and for visualization (Otten et al. 2015).

4.6. Conclusion 75

4.6 Conclusion
We have proposed an algorithm for performing stay extraction from the user’s
location history. Our algorithm is the first, to our knowledge, to exploit the
accuracy of locations. In summary, we provide the following contributions:

1. A distance function between a cluster and a location that takes into account
location accuracy.

2. An incremental merge function between a cluster and a location that takes
accuracy into account.

3. The ability to process a history of locations without device identifiers from
up to two devices of the same user, assuming that no device moves unless
the user is carrying it.

4. The implementation of this algorithm in a much larger system, an open-
source personal information management system, that we present in Chap-
ter 6.

Limitations The heterogeneity of positioning technologies and the algorithm’s
usage of all locations whatever the uncertainty helps detecting and positioning
stays in places where satellite navigation is non-existent (e.g., inside buildings).
However, it may also be a source of errors. This may happen when the user travels
in a mode of transportation with poor network connectivity (e.g., a high speed
train or underground transit). Network positioning technologies may report the
same inaccurate location for a few minutes, leading to the detection of incorrect
stays. Another difficulty is handling incorrectly split stays in presence of outliers.
The algorithm by (Nishida, Toda, and Koike 2015) counters this by using stay
regions instead and merging time-overlapping clusters, but at the expense of a
new tunable parameter and the issue that highly frequent movements from one
place to another may be incorrectly labeled as a stay. Finally, it is not yet clear
how the λ parameter should be tuned, perhaps even automatically from user
preferences and feedback.

Discussion and future directions Most documented stay extraction methods
have been designed to deal with location histories generated from satellite-based
positioning. Some of them even exploit the nature of this technology and con-
sider stays to be the moments when satellite-based positioning is not available
(e.g., inside a building) (Ashbrook and Starner 2003a). Recent developments in
positioning technologies have greatly enhanced the availability of device position-
ing (e.g., indoors using Wi-Fi-based positioning) and improved the accuracy of
existing ones (e.g., new satellite constellations in addition to GPS: GLONASS,
BDS, and Galileo). These developments not only facilitate location history analy-
sis by rendering issues such as the “discontinuous GPS sampling problem” less
relevant, but also bring new opportunities. Detecting stays can use lower-level
sensor information, to filter out location outliers through sensor fusion (e.g.,

76 Chapter 4. Stay extraction

when the accelerometer detects no movement), and to fine tune start and end
times by monitoring changes in sensor information (change in network signal
level, movement detection) (Kim et al. 2010). In fact, the problem boils down
to whether the objective is to determine the geographic position of a stay at all
costs, or if it is satisfactory to simply identify and distinguish them using all other
available information (e.g., detecting that Alice is in the cafeteria even though
we cannot tell her exact position). In the next chapter, we see how mobile device
sensor information can be used to infer the itinerary followed by the user: the
transportation modes, and the transit lines taken.

Chapter 5

Spatiotemporal knowledge:
Itinerary recognition

Part of the contents of this chapter have been published in (Montoya
and Abiteboul 2014; Montoya, Abiteboul, and Senellart 2015), where
we demoed and presented a short evaluation of a first version of the
system. In this chapter, we present the new version. Steve Samspon,
from ENGIE, was a notable contributor in the development of this
new version.

In the previous chapter, we saw how Alice’s day could be segmented into stays
and moves. In this chapter, we present Movup, a system that we designed that
uses a wide range of mobile sensor information, geographic information about
roads and railways, and public transportation schedule information (including
associated geographic information) to infer the itinerary, possibly multimodal,
followed by Alice during a move segment. Movup is a reworked version of Hup-
me (Montoya and Abiteboul 2014; Montoya, Abiteboul, and Senellart 2015),
the first version of the system. By design, the different aspects of the first
version could not be evaluated separately, to measure for instance the impact of
each sensor and in particular the impact of geographic information. Also, the
system’s execution time was poor due to the complexity of the continuous state
space it worked with. To address this problem and some other shortcomings, we
restructured and simplified the model and reimplemented the system to keep
only the novel aspects of the problem it tries to solve. These are discussed in this
chapter.

5.1 Introduction
The democratization of connected and sensor-rich personal mobile devices has
increased the demand for context-aware commercial applications taking advantage
of the information they are able to generate. Technology is still far from taking
full advantage of mobile device sensors to understand the users’ daily movements
in urban environments. One requirement of transit navigation mobile applications
is to provide real-time tracking within the network for the user, so as to alert her,

77

78 Chapter 5. Itinerary recognition

for instance, when she is on a bus, moments before the bus arrives at the stop
she should get off at.

In our setting, we would like to recognize the different transportation modes
used by Alice, including public transportation routes and transfers from one mode
to another, in an offline fashion, i.e., after the whole trip has been observed, so as
to an enrich her activity timeline in her knowledge base for later use. We call this
task itinerary recognition. When transfers between different modes are possible,
the recognized itinerary may be multimodal, which is an itinerary with a least
one transfer between two distinct modes.

In previous works, the description of modes and routes has varied in form and
complexity. A simple description is to find a mode among foot, bicycle, and
vehicle. A more complex description may include more refined modes such as
car, metro, and airplane, as well as extra dimensions for identifying the route
(e.g., bus line 123, flight number XYZ130), the stops (e.g., Gare du Nord, Penn
Station, Berlin Hauptbahnhof) and the roads (e.g., Lombard Street, Abbey Road,
Avenue des Champs-Elysées).

Movup performs multimodal itinerary recognition using sensor data from
Alice’s mobile device (smartphone) for the set of modes foot, bicycle, car,
bus, metro, train, and tram. For each unimodal segment of Alice’s itinerary
where Alice traveled on board of a public transportation vehicle (i.e., a bus, a
metro, a train, or a tram), the system identifies the route as well as the stops
where she boarded and alighted. To recognize such segments, Movup uses public
transportation schedule information, from which it computes a set of candidate
scheduled trips for various routes.

In contrast with its predecessor, Movup does not try to identify the roads
and railways in Alice’s itinerary, as doing so in our setting substantially increases
the complexity of the problem and makes evaluating the system’s performance
much harder without that much benefit. Instead, the system only determines
the locations (and times) where changes of transportation mode happen. When
the system recognizes a segment in which Alice traveled on board of a public
transportation vehicle, the roads or railways for that segment are implicitly
determined by the route to which the vehicle belongs. However, for vehicles which
can deviate from their normal route (e.g., buses in the case of road closures),
Movup does not determine the exact deviation.

The system runs a supervised learning algorithm that looks for the itinerary
of maximum probability given a set of mobile sensor observations. The algorithm
works in stages that progressively lift uncertainty by deriving high-confidence
estimates first, such as knowing whether the user is still or is moving, and use
these estimates as facts in the next stage to guide the search within a smaller state
space. In this setting, a critical aspect is that of the data that the system uses.
First, the system has access to geographic data (roads and railways) obtained
from OpenStreetMap (OSM) (Haklay and Weber 2008) that it uses to build a
transportation network model for the different recognizable modes. Each network
describes the roads or railways that a vehicle of the network’s mode can travel
on. Then the system uses public transportation data (routes and schedules)
published online by transportation agencies in GTFS (Google 2015a) format.

5.2. Transportation networks 79

Since geographic information about public transportation routes in GTFS format
is usually limited to the locations of stops, the system uses the transportation
networks built from OSM data to automatically infer the path of each route
in the transportation network built for the route’s mode. This enriches public
transportation routes with information that is useful to the recognition task such
as the position of underground passages and tunnels along the routes. Finally, the
system processes mobile sensor data based on their kind (locational, dynamic and
contextual, cf. Section 3.5) and their characteristics (e.g., frequency, accuracy).
Accordingly, a preprocessing stage is used that reduces redundancy and noise, then
the result is transformed into a sequence of feature vectors providing information
in numerical form that is relevant to the recognition task, such as the user’s
distance to the nearest highway or her average speed over the previous few seconds
at any given moment. Difficulties arise from lack of data (e.g., lack of positioning
inside the metro system), from too much data (e.g., combination of possibly
conflicting location information, overlapping public transportation lines), and
inaccuracies or imprecisions in the data (e.g., map errors, imprecise location).

We evaluated the performance of the system using data recorded from users
traveling in the Paris metropolitan area. For this, we provided them with the
Hup-me mobile application described in Section 3.5 to collect sensor information
from their smartphone. We manually annotated the journeys that had been
recorded. Our annotations included the transportation modes as well as the
public transportation routes that had been used. OSM data for the Paris area
and GTFS data published by transportation agencies operating in the area were
acquired. The Paris metropolitan area is rich in public transportation modes:
sub-urban train, metro, bus, and tram. We compared the output of the algorithm
to the annotations that we assumed to be correct.

This chapter is organized as follows: Section 5.2 introduces the notion of a
transportation network and describes the construction of transportation networks
from OSM data. Section 5.3 describes the representation of public transportation
routes and their schedules, based on GTFS, and shows how the transportation
networks obtained from OSM data can be used to enrich the representation
of routes with information that is useful for itinerary recognition. Section 5.4
describes the preprocessing and extraction of features from mobile sensor data.
Section 5.5 formally defines the itinerary recognition problem, and Section 5.6
describes the algorithm to solve it. Section 5.7 discusses an evaluation of the
algorithm. Section 5.8 discusses the related work and Section 5.9 concludes.

5.2 Transportation networks

In this section we introduce the notion of a transportation network and describe
its construction from OpenStreetMap (OSM) data (Haklay and Weber 2008).
To do so, we first present standard definitions for geospatial information and
formalize the notion of a spatial network.

80 Chapter 5. Itinerary recognition

S

N

g

a

b

a1
x a2

a3

Figure 5.1: Geodesics and trails: a, b, a1, a2, a3 are points, the curve denoted g
represents the geodesic from a to b, and the two dashed curves represent the
trail (a1, a2, a3). x is the point on the geodesic from a1 to a2 at 3000 km from a1
(x = H((a1, a2, a3))(3000 km)).

Geographic information
We model the shape of the Earth as a spheroid. A point on Earth is represented
by a pair of geographic coordinates, called latitude and longitude, in Point =
(π, π]×

[
π
2 ,

π
2

]
. A trail (a1, . . . , ar) is a finite sequence of 2 or more elements of

Point, such that ai 6= ai+1 for all i. The set of trails is denoted Trail, and we
call geography an element of Geography = Point ∪Trail. Given two distinct
points a, b in Point, the geodesic from a to b is the shortest curve from a to b on
the spheroid. A point on a trail (a1, . . . , ar) is a point on the geodesic from ai
to ai+1 for some i. The length of the geodesic from a to b is called the distance
between a and b and is denoted dist(a, b). The length of a trail (a1, . . . , ar) is
defined as:

length((a1, . . . , ar)) =
r∑
i=1

dist(ai, ai+1).

The trail (a1, . . . , ar) defines a curve
H((a1, . . . , ar)) : [0, length((a1, . . . , ar))]→ Point

as follows. For each i ∈ {1, . . . , r − 1} and l ≤ dist(ai, ai+1),
H((a1, . . . , ar))(length((a1, . . . , ai)) + l) is the point at distance l from ai on
the geodesic from ai to ai+1.

The distance between points is extended to a distance between two geographies
g, g′ ∈ Geography by:

dist(g, g′) = min{dist(x, x′) | x point on H(g), x′ point on H(g′)}.
Figure 5.1 illustrates the concepts of geodesics and trails.

5.2. Transportation networks 81

E0 from0 to0
5 1 4
6 1 2
7 1 2
8 2 3
9 3 4

p1
p2

p4 p3

q5

q6

q7

q8

q9

geo((q5, d′))

geo((q9, d))

Figure 5.2: A spatial network example: G0 = {N0, E0, geo0, from0, to0}. It has
nodes N0 = {1, 2, 3, 4} and edges E0 = {5, 6, 7, 8, 9}. The table on the left gives
the functions from0 and to0. The figure on the right represents the geographies
of nodes and edges projected into a plane: pi = geo0(i) is the geography of node
i, represented as a black disk, and qj is the trail of edge j, represented as a line
from pfrom0(j) to pto0(j) with an arrow oriented toward the geography of to0(j). d
and d′ are offsets over the trails q9 and q5: the geographies of locations (9, d) and
(5, d′) are represented on the figure.

Spatial networks
A spatial network is a tuple G = (N , E , geo, from, to) s.t.

• N , E are disjoint finite sets (called respectively the nodes and edges).

• For n ∈ N , geo(n) ∈ Point.

• For e ∈ E , from(e) and to(e) belong to N , and geo(e) ∈ Trail is a trail
from geo(from(e)) to geo(to(e)).

By extension, the length of an edge is defined as the length of its trail. Let
e ∈ E . For each d ∈ [0, length(e)], we say that l = (e, d) is a location in G. The
value d is called the offset of that location. By extension, we denote by geo(l)
the point on the curve of geo(e) given by H(geo(e))(d). The set of locations is
denoted Location(G).

Figure 5.2 illustrates the notion of a spatial network.

Transportation networks
A spatial network captures the notion of “physical infrastructure”: a spatial
network can be used to model places on Earth (via spatial nodes) and their
physical connections to one another (via spatial edges and their corresponding
trails) such as metro platforms and metro line tunnels. However, it does not
capture movement constraints with respect to a transportation mode. For instance,
by foot, one may decide to do a U-turn between two spatial nodes, and reverse
one’s direction, whereas one cannot do that in a train or on a freeway. Also,
turning left at an intersection might be forbidden for a car, while it may be

82 Chapter 5. Itinerary recognition

allowed for a bus. A unimodal transportation network, which we introduce next,
specifies such constraints for a particular transportation mode.

We define the auxiliary notion of a path in a spatial network G =
(N , E , geo, from, to). It uses D = {J,I}, a set of two symbols, respectively
called backward and forward, specifying the two directions on an edge. An edge
e ∈ E that can be traversed in the orientation of the edge is denoted (e,I), and
(e,J) for the reverse orientation. Let Ê = {(e, δ) | δ ∈ D} be the set of edge
traversals. We extend from and to to an edge traversal (e, δ) by:

from(e,J) = to(e) to(e,J) = from(e)
from(e,I) = from(e) to(e,I) = to(e).

A unimodal transportation network over a spatial network G is a tuple T =
(G,M, U, V) such that:

• M ⊂ Ê is the set of admissible edge traversals.

• U is a set of transitions of the form (e1, δ1), (e2, δ2) ∈M2, with to(e1, δ1) =
from(e2, δ2) and .

• V is a set of in-edge transitions of the form (e, δ1), (e, δ2) ∈M2.

In other words, U specifies possible transitions when switching from an edge
to another at a node, and V specifies under which conditions one can reverse
one’s direction while staying on the same edge.

Example 5.2.1 Consider the spatial network G0 defined in Figure 5.2. Let us
define a transportation network T0 = (G0,M0, U0, V0) over G0. Let M0 be defined
by:

M0 = {(5,J), (6,I), (6,J), (7,I), (8,I), (9,I), (9,J)}.
Then the following statements:

(6,I), (8,I) ∈ U0

(7,I), (8,I) 6∈ U0

(9,I), (5,J) ∈ U0

ensure that the network allows transitions from edge 6 to edge 8 at node 2 but
does not allow transitions from edge 7 to 8 at node 2. This is a turn restriction.
Also, it ensures we are able to go from edge 9 to edge 5 at node 4. For edge 9,
direction reversal is disallowed by ensuring:

(9,I), (9,J) 6∈ V0

(9,J), (9,I) 6∈ V0.

Edge 9 works like a highway.

Finally, a location in T is a pair (ε, d), where ε = (e, δ) ∈M is an admissible edge
traversal and d is an offset in [0, length(e)]. The set of locations in T is denoted
Location(T). We extend geo to locations in T by geo(((e, δ), d)) = geo((e, d)).

In Example 5.2.1, ((9,I), δ) is a location in T0.

5.2. Transportation networks 83

a

p1
p2

p4 p3

(6, d6)
(8, d8)

(9, d9)

(5, d5)

(7, d7)

Figure 5.3: A point a and its projection
{(5, d5), (6, d6), (7, d7), (8, d8), (9, d9)} on
the spatial network G0 defined in Fig-
ure 5.2.

Paths in a transportation network For r ≥ 0, a path in T is a sequence
ρ = ((ε0, d0), (ε1, d1), . . . , (εr, dr)) where for each i, (εi, di) is a location in T (with
εi = (ei, δi)), and for i < r either:
(edge transition) (εi, εi+1) ∈ U and

δi+1 = I =⇒ di+1 = 0
δi+1 = J =⇒ di+1 = length(ei+1),

(in-edge transition) (εi, εi+1) ∈ V and di = di+1,

(in-edge move) εi = εi+1 and either
(di+1 ≥ di and δi = I), or (di ≥ di+1 and δi = J).

The set of paths in T is denoted Paths(T).
In Example 5.2.1, a possible path is

((9,I), d)((5,J), length(5))((5,J), δ′).

The following two paths are however disallowed:
((9,I), 0)((9,I), d)((9,J), d)((9,J), 0).

((7,I), 0)((7,I), length(7))((8,I), 0).

Projection on networks A projection on a spatial network is used to associate
a point with a set of locations in the spatial network. We define the orthogonal
projection of a point a on an edge e as the set

proj(a, e) ={(e, d) ∈ Location(G) |6∃ d′ ∈ [0, length(e)]
dist(a, geo((e, d))) < dist(a, geo0((e, d′)))}.

To associate a with locations on a spatial network G = (N , E , geo, from, to), we
introduce the orthogonal projection of a on G, defined as

proj(a,G) =
⋃
e∈E

proj(a, e).

Similarly, a projection of a point a on a transportation network T =
(G,M, U, V) is a set of locations in T . The orthogonal projection of a on T
is defined as:

proj(a, T) = {((e, δ), d) ∈ Location(T) | (e, d) ∈ proj(a,G)}

84 Chapter 5. Itinerary recognition

Example 5.2.2 Figure 5.3 shows the projection of a point a on the spatial
network G0 defined in Figure 5.2. If we consider T0 as in Example 5.2.1, then
some possible elements of proj(a, T0) are

((9,I), d9) ((9,J), d9) ((7,I), d7) ((5,J), d5)

On the other hand, ((5,I), d5) 6∈ proj(a, T0).

A spatial network built from OpenStreetMap data
In this part, we briefly describe the OpenStreetMap (OSM) model (Haklay and
Weber 2008), then we explain how a spatial network is built from it. OSM data
is composed of nodes, ways, and relations. Each such element can hold a set of
textual key–value pairs, called tags.

A node represents a point. Each node is associated to a point in Point and
can be used to represent road intersections, bus stops, building entrances, etc.

A way is a finite sequence of nodes. A way geographically represents either a
trail or a polygon. As trails, they can be used to represent footpaths, roads, rail
lines, etc. As polygons, they can represent building outlines, parks, etc.

A relation is a finite sequence of nodes, ways or other relations. A relation
can be used to represent turn restrictions, administrative boundaries, routes such
as bus routes or even major roads (trails).

Let ways that function as trails be called trail-ways, and let the order relation
induced by a way w be denoted ≤w. A spatial network G = (N , E , geo, from, to)
is built from OSM data by following these steps:

• N is defined as the set of OSM nodes that are either extremities of a
trail-way or are members of two or more trail-ways. geo(n) is defined as
the point to which the node n is associated.

• E is defined as the set of e = (n, n′) ∈ N 2 such that:

1. n 6= n′,
2. both n and n′ are members of a w that is not a polygon,
3. n ≤w n′,
4. and there does not exist a n′′ ∈ N \ {n, n′} such that n ≤w n′′ ≤w n′.

from(e) (resp. to(e)) is set equal to n (resp. n′), and geo(e) is defined as
the substring of w from n to n′

• Similarly, an edge e ∈ E is added for each relation that may be interpreted
as an OSM way.

Transportation networks built from OpenStreetMap data
We have previously shown how to build a spatial network G from OSM
data. We now describe the construction of transportation networks T (m) =
(Gm,Mm, Um, Vm) on top, for each transportation mode m among foot, bicycle,

5.3. Public transportation routes and schedules 85

car, bus, tram, metro and train. This construction uses the tags that are
associated to edges in OSM data. These tags give information about the kind of
vehicles that can access the different footpaths, roads, and railways represented in
OSM: highway=motorway, highway=cycleway, highway=footway, access=no,
bus=yes, etc.

OSM mode profiles To construct a transportation network from OSM data,
we use an OSM mode profile. An OSM mode profile is a set of tag rules defining
for a given transportation mode whether an edge is traversable. Several journey
planners today use OSM data and base themselves on such profiles. Among the
open-source ones, the most well-known (Karich and Schröder 2016; Byrd and
Grégoire 2016) have already identified and published descriptions of OSM profiles
for the modes foot, bicycle, and car. For each mode, there are even rules to
extract information that is useful for associating costs to edges, such as the speed
limit. These costs are used in journey planning to be able to compute the shortest
path between two points. In our work, we based ourselves on their mode profile
specifications. We simplified them so as to remove restrictive rules that were
rare or overly specific and possibly highly inaccurate. These profiles are sufficient
to build the sets Mm and Ut of possible edge traversals and transitions for the
modes foot, bicycle, and car. In addition, we defined our own rules for bus,
metro, tram, and train modes. Typically, the value of the railway tag on an
edge is indicative of the kind of rail transportation that can traverse it. We did
not impose any transition restrictions. For the set of in-edge transitions Vm, we
disallowed U-turns for car and bus on roads such as highways.

5.3 Public transportation routes and schedules

In this section, we describe the representation of public transportation routes and
schedules used by the system. This representation is based on the General Transit
Feed Specification (GTFS) (Google 2015a). Many public transportation agencies
all over the world now use the GTFS format to publish information about the
routes and schedules they operate. GTFS defines the following concepts: agencies,
routes, trips, stops, stop-times, calendars, shapes, and transfers.

Informally, an agency represents a transit operator that is in charge of several
routes. (Routes are known as “lines” in some public transportation systems.) A
route is a group of trips that are displayed to passengers as a single service. Trips
are finite sequences of two or more stops traversed in order by a particular vehicle
at a particular time of the day. A stop is geographically represented by a point
and represents a location where a vehicle can pick up or drop off passengers. A
stop-time represents the time when a particular trip arrives and departs from a
stop. A calendar represents the precise dates an individual trip operates. Finally,
a transfer is a pair of stops representing a foot connection between two routes.
Optionally, a trip might be geographically referenced in the form of a shape (a
trail).

A trip pattern is a set of trips, where two trips are said to belong to the

86 Chapter 5. Itinerary recognition

s1 s2

s3

s4
{2}

{1}

{3}
{1, 2, 5}

{3}

{4}

Figure 5.4: The graph representing the admissible moves of the trip pattern from
Example 5.3.1. Each node in this graph represents a stop and each edge (s, s′)
represents the existence of a trip pattern p for which (s, s′) is a pair of consecutive
stops in p. Edges are labeled with the set of matching trip patterns.

same trip pattern if and only if they belong to the same route and have the same
sequence of stops. The set of trip patterns for a given route forms a partition of
the set trips of this route. A route models a real-world public transportation line.
A trip pattern of this route corresponds to an particular order in which vehicles
on this line can traverse its stations (e.g., an express service that only stops at
selected stations). In GTFS, each route is associated with a transportation mode
such as bus, tram, metro, or train. Example 5.3.1 gives an example of a route
and its set of trip patterns.

Example 5.3.1 Let {s1, s2, s3, s4} be the set of stops of a bus route. The direction
of travel is either eastwards or westwards. Five trip patterns compose this route.
They are defined by the following sequences of stops:

1. (s1, s2, s3), traveling eastwards;

2. (s1, s2, s4), which is like 1. but with an alternative last stop;

3. (s3, s2, s1), which is the reverse of 1., traveling westwards;

4. (s3, s1), which is like 3. but skips stop s2;

5. (s1, s2), which is like 1. and 2. but stops earlier.

Figure 5.4 shows a graph representing all admissible moves from one stop to
another in any of these trip patterns.

Enriching routes using the transportation networks
An issue with GTFS data is that it often comes with missing or imprecise shapes,
which are the geographical descriptions of the paths taken by public transportation
vehicles. Moreover, the itinerary recognition task could benefit from knowledge
of whether a stop or part of a trip is underground, which is never provided. To
make route information more useful, we decided to enrich routes by exploiting
the transportation networks built from OSM (cf. Section 5.2)

5.3. Public transportation routes and schedules 87

To do so, we associate each trip pattern with a path in the transportation
network T (m) built from OSM using the procedure described in Section 5.2,
where m is the trip pattern’s mode. We developed an automatic alignment
procedure to perform this association, that we briefly describe next.

The association that we want to perform can be formulated as a map-matching
problem (Quddus, Ochieng, and Noland 2007), which consists in matching location
observations to a path in a road network. In such setting, the sequence of stops
s1, . . . , sT in a trip pattern p corresponds to the sequence of location observations
to match. The position of the observation at index t is defined by the geographic
point zt of stop st. Observations cannot be bound to an absolute time. However,
the duration between two consecutive observations can be defined as the average
time a vehicle takes to go from one stop to the next (averaged over the set of
trips). The road network in our case is the transportation network T built from
OSM for the particular mode of p. The problem is to match the observations
to a sequence of locations (l1, . . . , lT) and a path in T between these locations
l1π1l2π2 · · · lT−1πT−1lT that corresponds to the path most likely followed by a
vehicle in trip pattern p. The difficulty here is that consecutive observations are
minutes apart.

To solve this problem, we compute for each stop st the set of its nearby
orthogonal projections {lt,1, . . . , lt,nt} on T . Then, for each pair of orthogonal
projections (lt,i, lt+1,j) obtained from consecutive stops, we compute the set of
shortest paths from lt,i to lt+1,j in the transportation network T . When this set is
not empty, π̃(t,i),(t+1,j) denotes one of its elements. After that, we build a trellis1

that has T slices in which the nodes of the t-th slice are the stop-projections
lt,1, . . . , lt,nt and in which there exists an edge between lt,i and lt+1,j if there exists
a path between these locations in T . We add two extra nodes s and e to the
trellis, and connect them to rest of the nodes by adding an edge between s and
each node in the first slice and an edge between e and each node in the T -th slice.

Weights are added to the trellis so that the weight of each acyclic path π
from s to e is equal to the sum of shortest path lengths between consecutive
stop-projections composing π and the sum of geographical distances between each
stop-projection composing π and its associated stop. More precisely, the edge
weight function w is defined as follows:

• for all i, w(s, l1,i) = dist(z1, l1,i),

• for all t, i and j, w(lt,i, lt+1,j) = length(π̃(t,i),(t+1,j)) + dist(zt+1, lt+1,j),

• and for all i, w(lT,i, e) = 0.

Every acyclic path in the trellis from s to e yields an alternating sequence
l1π1l2 · · · lT−1πT−1lT of locations and paths in T , which altogether defines a path
in T . One of these paths is among the shortest and is chosen as the path that is
associated with the trip pattern p. An illustration of a trellis constructed from a
trip pattern with five stops is given in Figure 5.5. In Section 5.7, we demonstrate

1A trellis is a graph whose nodes are partitioned into a set of time slices, ordered by time,
and whose edges are pairs of nodes in adjacent time slices. The earliest and latest time slices in
the trellis only have one node.

88 Chapter 5. Itinerary recognition

l1,1 l1,2 l1,3 l1,4 l1,5

l2,1 l2,2 l2,3 l2,4 l2,5

l3,1 l3,2 l3,3 l3,4 l3,5

l4,1 l4,4

w(1,1),(1,2)
s e

ws,(1,1) 0

l1 l2 l3 l4 l5π1 π2 π3 π4

Figure 5.5: The trellis built during the matching of a trip pattern consisting of
five stops to some path l1π1l2π2l3π3l4π4l5 in T in the transportation network. In
this example, the shortest path in the trellis is highlighted in red.

and briefly evaluate the result of this match. An alternative would have been to
use the duration between each observation. Doing so would require being able to
translate times into distances. Another possibility is using information of other
kinds (found in OSM tags for instance), in which case we would perhaps need to
use a probabilistic model. The disadvantage is that such model would require
training.

5.4 Mobile sensor observations

In this section, we describe the observations made by the sensors of the user’s
mobile device over the course of her journey, and specify the preprocessing and
extraction of features from these observations for use in itinerary recognition.

Raw sensor data is collected using the application described in Section 3.5
and is stored as a collection of time series. The application collects data over
a given period of time [τ s, τ e] from locational, dynamic, and contextual sensors.
Sensors capture different kinds of knowledge. To perform itinerary recognition,
sensor data is transformed into a set of informative values (features) relevant
to the itinerary recognition task. Some of these features are computed using
knowledge taken from the set transportation networks {T (m)|m ∈M} described
in Section 5.2.

Raw sensor data do not form uniform time series. Most sensors, such as
locational sensors, try to perform periodic measurements, but some measurements
may be missed and measurements may not be completely regularly spaced in time.
Other sensors, such as the sensor recording the signal strength of the cellular
network, may only record state changes. To use these measurements for itinerary
recognition, sensor data is converted into an evenly spaced time series of feature
vectors (τt, vt)1≤t≤T . The sampling frequency of this series is 1/τ Hz, where τ is a
strictly positive integer. We call this process feature extraction. The τt’s are the

5.4. Mobile sensor observations 89

feature observation times in [τ s, τ e]. Each vt is a real-valued multidimensional
vector that is computed from sensor measurements taken before time τt. Each
feature vector is defined as the concatenation of three vectors (its components),
one for each kind of sensor: locational, dynamic, and contextual. Each component
is the result of a specific process that is applied to a specific kind of sensor data.
After defining the sequence of feature observation times, we present how each of
these components is produced.

Observation times The definition of the sequence of feature observation times
τ1:T is based on locational sensor observation times. The idea is that location
information, which is not always available, has the most impact on the size
of the search space when trying to infer the user’s itinerary. The location of
the user’s mobile device is requested every second from satellite and network
location sensors. For each of these sensors, a measurement is obtained at most
every second. The set of location measurements form a non-uniform time series
spanning [ρs, ρe] ⊂ [τ s, τ e]. Let τ1 be ρs + τ , where τ is the desired sampling
period of the feature vector time series. If ρe ≥ τ1, then T − 1 is defined as the
quotient in the integer division of ρe − τ1 by τ . Otherwise, T is defined as 0 and
the resulting feature vector time series is empty. For t ∈ {1, . . . , T}, τt is defined
as τ1 + τ(t− 1).

Locational To obtain the locational component of the feature vector time series,
the raw location measurements time series is resampled to 1 Hz by picking the
sample with the highest accuracy (i.e., with the smallest radius) over a sliding
1-second window that starts at ρs. If no sample is available within the window,
a placeholder value ⊥ is picked. For each t, let Lt be the sequence of locations
over the time interval]τt − τ, τt] in the resampled location series. Each Lt is of
size τ . (τt, Lt)1≤t≤T is called the location sequences time series. The locational
component of vt is defined with respect to the sequence of locations Lt, and is
the defined as the concatenation of the following vectors:

• Speed measurements included within Lt form a vector of size τ , assuming
that missing speed measurements are replaced by a fixed large negative
value.

• A vector of location accuracies and a Boolean vector indicating which
locations in Lt are ⊥ are also similarly formed. Missing location accuracies
are replaced by a large positive value.

• Finally, for each transportation mode m inM, a vector of size τ whose i-th
coordinate is the minimum distance between the i-th location in Lt and its
projection on the transportation network T (m) (when the i-th location is
⊥, a fixed large positive value is used).

Dynamic Dynamic sensor information includes accelerometer measurements
sampled at somewhere between 50 to 100 Hz. While we are aware that combining
accelerometer data with gyroscope and magnetometer measurements could help

90 Chapter 5. Itinerary recognition

Satellite Cellular Wi-Fi Bluetooth

Emitters Satellites Towers Access points Discoverable devices
Level SNR RSSI RSSI RSSI

Sample rate 1 Hz On-change 1/60 Hz 1/60 Hz

Table 5.1: Characteristics of radio-based technology contextual features. (SNR
stands for Signal-to-Noise Ratio and RSSI stands for Received Signal Strength
Indication.)

reduce the uncertainty and possibly even let us derive the orientation of the
acceleration vector with respect to Earth, data from these two other sensors
were not considered for this algorithm. As a consequence, only the norm of the
acceleration vector is used, which forms an almost uniform time series. This
series is interpolated and downsampled to 20 Hz and analyzed over overlapping
sliding windows for which statistical features (e.g., mean, standard deviation,
etc), time domain features (e.g., integral) and frequency domain features (discrete
Fourier transform components) are computed. The dynamic component of vt is
the concatenation of these features computed over time windows inside [τt− τ, τt].

Contextual For each type of radio-based technology used by the mobile device,
the measured signal levels of in-range emitters are considered. Statistics such
as the emitter count and the mean, the maximum, and standard deviation of
the signal level are used as features. Table 5.1 details the specifics. For each
technology, the most recent measurement at time τt is used to define the features
at time τt. When no measurement is available (e.g., at the beginning), statistical
features are replaced with appropriate dummy values, and a Boolean feature is
used to represent the unavailability of a measurement. For Bluetooth, additionally,
a measure of the number of emitters that stay in range over two consecutive
scans is used a feature. As discussed in Section 3.5, the number of discoverable
Bluetooth peers in range may be indicative of the number of people around the
user. In particular, if the user is traveling in a vehicle with other people, then
some of these peers may stay in range multiple times over the course of the user’s
journey. This additional measure tries to capture this phenomenon.

5.5 Itinerary recognition
In this section, we define the itinerary recognition problem. We begin by presenting
the activity recognition problem, which is more general, and route recognition,
which is more specific.

Activity recognition Activity recognition is concerned with determining the
actions and goals of one or several agents given a series of observations on their
actions and the environment (L. Chen et al. 2011). In our setting, the agent
of interest is Alice. Activity recognition is mostly concerned with determining

5.5. Itinerary recognition 91

Alice’s activity at any given time τ from observations before or immediately
after τ , and particularly in an online fashion or in real-time. This is done by
context-aware mobile applications that need to adapt quickly to a change in user
activity.

In some cases, the problem is to build a timeline of Alice’s activities, i.e.,
to determine Alice’s activities during a given time interval [τ s, τ e], after all
observations over this interval have been collected. One difference in this case is
the ability to take into account evidence of an activity that may come later on (e.g.,
distinguishing between equally likely “walking upstairs” and “walking downstairs”
activities depending on whether Alice is later detected on the building’s rooftop
or in its underground parking lot). Formally, activity sequence recognition is the
problem of determining a sequence of activities:

(θ0, a1, θ1, a2, . . . , θi−1, ai, θi . . . an, θn),

where the θi’s are the transition times (τ s = θ0 < . . . < θi < θi+1 < . . . < θn = τ e),
and each ai is the user’s activity in A over the time interval [θi−1, θi].

Typically, the set of activities A to recognize from is finite, and, in human
activity recognition, usually small (there is rarely more than ten classes) (Lara and
Labrador 2013). Example activities are tooth brushing, walking, running, sitting
on a desk, etc. Another special case of activity recognition is transportation mode
recognition, in which activities to recognize are modes of transportation such as
foot, car, bicycle, bus, etc.

Route recognition Route recognition or route matching is the problem of
recognizing, given a set of observations over a time interval of unimodal trans-
portation, whether Alice was on board a vehicle of public transportation, and
identify the route it belongs to: an identifiable regular flight, a particular bus
line, a train line. One difficulty is differentiating routes that only differ by subtle
aspects (e.g., geographically overlapping routes with slightly different schedules).
Another difficulty is recognizing a route over a short period of time, where the
probability of overlapping with another route is higher, or, in the case of bus
routes, where there may not be enough evidence to distinguish it from a non-public
mode such as a car or taxi.

Itinerary recognition Itinerary recognition is a type of activity sequence
recognition. The problem is to determine Alice’s itinerary, i.e., the sequence of
transportation modes and routes she used, given observations over a time interval
[τ s, τ e]. An itinerary is defined as a sequence

I = (θ0)(m1, r1)(θ1, s1)(m2, r2) · · · (θi−1, si−1)(mi, ri)(θi, si) · · · (mn, rn)(θn),

where the θi’s are the transition times (τ s = θ0 < . . . < θi < θi+1 < . . . <
θn = τ e), and each si is the stop (e.g., Gare du Nord, Heathrow Airport, Berlin
Hauptbahnhof) at which the transition at time θi happens. Each mi and ri
are respectively the user’s transportation mode and route over the time interval
[θi−1, θi].

92 Chapter 5. Itinerary recognition

Itinerary recognition subsumes transportation mode recognition and route
recognition. It is also a considerably more difficult problem. For instance,
assuming that perfect solutions to these two other problems are available, itinerary
recognition can in theory be solved by performing transportation mode recognition
followed by route recognition over each recognized segment of unimodal vehicular
transportation. In practice, however, transportation mode recognition cannot
always be perfectly solved, so real solutions need to take into account that the
assumption of unimodal transportation on the input of route recognition may
not always be realized. Additionally, due to the difficulty of recognizing routes
over short periods of time, an erroneously fragmented route may be harder to
recognize. Thus, a combined solution may have to consider different segmentation
hypotheses, run route recognition on each of them, and select the itinerary that
best fits the whole observation sequence. Finally, if we simply formulated itinerary
recognition as an activity sequence recognition problem, the set of activities to
recognize would be much larger than in typical human activity or transportation
mode recognition, as this set would have to contain the set of routes with their
respective stops.

5.6 Movup’s itinerary recognition algorithm
In this section, we present the supervised learning algorithm for itinerary recogni-
tion that Movup uses. The algorithm takes as input:

• a set of observations O made by the sensors of the user’s mobile device over
the course of the time interval [τ s, τ e];

• a set of vehicular modesMV , e.g., {bicycle, car, bus, train, tram, metro};

• a set of public transportation modes MP that is a subset of MV , e.g.,
{bus, train, tram, metro};

• a set of transportation modesM = {foot} ∪MV that includes in addition
toMV a distinguishable foot mode foot;

• a description of public transportation routes and their schedules P (Each
route r has a mode m(r) ∈MP and defines a set of trip patterns. The set
of routes and stops are respectively denoted R and S.);

• a mapping T assigning to each transportation mode m ∈M a transporta-
tion network T (m).

The itinerary model
A pair of sequences

I = ((mi, ri)1≤i≤n, (θi, si)1≤i≤n−1) ∈ (M× (R∪ {⊥}))n × ([τ s, τ e]× S)n

is said to be an itinerary of length n if and only if:

5.6. Movup’s itinerary recognition algorithm 93

Mobile sensor
observations O

Transportation
networks

{T (m)|m ∈M}

Public transportation
routes and schedules

P

Most likely itinerary
I

Feature extraction

Activity recognition

Candidate generation

Itinerary recognition

Activity sequence
a1:T

Feature vectors
(τt, vt)1≤t≤T

Candidate itineraries
IC

Location sequences
(τt, Lt)1≤t≤T

Figure 5.6: Overview of Movup’s algorithm.

• for all i, θi < θi+1;

• for all i, either ri = ⊥ or ri ∈ R, mi ∈MP , and m(ri) = mi;

• for all i > 1, if ri ∈ R then si−1 and si appear in this order in a trip pattern
of r;

• if r1 6= ⊥ then s1 belongs to a trip pattern of r1.

We denote by I the set of itineraries.

Algorithm
The task of Movup’s algorithm is to find the most likely itinerary I ∈ I with
respect to the set of observations O. The algorithm is divided into stages that
progressively derive more advanced knowledge: (1) feature extraction, (2) activity

94 Chapter 5. Itinerary recognition

recognition, (3) candidate generation, and (4) itinerary recognition. Figure 5.6
gives an overall picture of this decomposition. Next, we outline the inputs and
outputs of each stage. After that, we provide a detailed description of each of
them.

1. The first stage, denoted feature extraction, produces a time series of feature
vectors (τt, vt)1≤t≤T and location sequences (τt, LT)1≤t≤T from the set of
observations O and knowledge taken from the set of transportation networks
{Tm|m ∈M}.

2. The second stage, denoted activity recognition, infers the most likely activity
sequence a1:T among Stationary, MoveFoot, and MoveVehicle using classic
activity sequence recognition techniques. It takes as input the time series
of feature vectors (τt, vt)1≤t≤T output by the first stage.

3. The third stage, denoted candidate generation, produces a set of candidate
itineraries IC ⊂ I that is encoded as a set of paths in a graph in which
each node corresponds to a particular itinerary state over the course of the
user’s journey. This stage takes as input the activity sequence a1:T output
by the second stage and the location sequence (τt, LT)1≤t≤T output by the
first stage.

4. The fourth and final stage, denoted itinerary recognition, uses a probabilistic
model on top of the set of candidate itineraries IC and looks for the itinerary
I of maximum probability. The feature vector time series (τt, vt)1≤t≤T and
the recognized activity sequence a1:T is reused by this stage in the definition
of the probability of each itinerary state with respect to the observations.

Activity recognition The activity recognition stage processes the sequence of
feature vectors v1:T using a feedforward neural network (Goodfellow, Bengio, and
Courville 2016a) that consists of multiple fully-connected layers, i.e., where each
unit (neuron) in each layer is connected to every unit in the previous layer. The
number of units comprising the input layer of this network is equal to the number
of dimensions of each feature vector vt. The output layer of the network forms
a three-dimensional vector A(v; θN) representing the energies of the activities
Stationary, MoveFoot, and MoveVehicle, given a feature vector v in the input
layer and a set of weights w. The network is applied to each vt with the same set
of weights θN . The result is a sequence of vectors (A(vt; θN))1≤t≤T . To obtain the
sequence of predictions a1:T , the A(vt; θN)’s are used in the definition of the joint
probability distribution of a linear-chain conditional random field (CRF) (Koller
and Friedman 2009b) that models the conditional dependency of the activity
sequence on the observations, which are represented by the sequence of feature
vectors v1:T . Such CRF allows each prediction at to take into account its context
by globally normalizing the energy sequence (A(vt; θN))1≤t≤T (Andor et al. 2016):
the likelihood of the previous and next activities are taken into account in the
prediction of the current activity. For each t, the CRF defines two random
variables: an observed variable Xt, which represents the feature vector vt at time

5.6. Movup’s itinerary recognition algorithm 95

τt, and a target variable Yt, which represents the activity at. The domain of Yt is
{Stationary, MoveFoot, MoveVehicle}. The conditional probability distribution
of the CRF’s target variables Y1:T given the observed variables Xt is a log-linear
model with weights θL over its feature functions. Given the neural network weights
θN , the conditional probability distribution is parametrized by θ = (θN , θL) and
is given by:

P (Y1:T |X1:T ; θ) = 1
Zθ(X1:T) P̃θ(Y1:T , X1:T)

where the joint probability distribution and the normalization function are equal
to:

P̃θ(Y1:T , X1:T) =
T∏
t=2

φθL(Yt−1, Yt)
T∏
t=1

ψθN (Yt, Xt)

Zθ(X1:T) =
∑
Y1:T

P̃θ(Y1:T , X1:T).

The ψθN (Yt, Xt)’s and φθL(Yt−1, Yt)’s are respectively called the observation and
transition factors. For each t and each activity i, the observation factor is the
exponential function of the activity’s energy, A(vt; θN)(i):

ψθN (Yt = i,Xt = vt) = e−A(vt;θN)(i).

θL consist of 32 real parameters defining a square matrix representing the transition
energies θL(i, j) between each pair (i, j) of activities. The transition factor at t
between an activity i and an activity j is defined as:

φθL(Yt−1 = i, Yt = j) = e−θL(i,j).

When T is equal to 1 (i.e., the sequence is reduced to a single point), the model
is equivalent to a feedforward neural network with a softmax activation function
on its output layer.

The model is trained using a dataset of annotated journeys. For each journey,
the annotations segment the observation time interval [τ s, τ e] into time periods
of either Stationary, MoveFoot, or MoveVehicle states. These annotations are
the ground truth of the activity recognition model. To train the model, the
feature vectors v1:T of each journey are plugged into the input layer of the neural
network and the annotated {Stationary, MoveFoot, MoveVehicle} labels y1:T
into the target variables Y1:T of the linear-chain CRF. Training is performed by
maximizing the likelihood

P (Y1:T = y1:T |X1:T = v1:T ; θ)

over the set of parameters θ using gradient descent. Since the CRF is a linear-
chain, the likelihood P (Yt|Xt; θ) can be computed efficiently using the forward-
backward algorithm. When this likelihood is log-linear over parameter-free feature
functions, the optimization is convex. In our case, however, observation factors
are exponential functions of the outputs of a multi-layer feedforward neural
network, so the optimization is not necessarily convex. Once the model has been
trained, the most likely activity sequence (the most probable assignment) can be
computed using the Viterbi algorithm for CRFs (Sutton, McCallum, et al. 2012).

96 Chapter 5. Itinerary recognition

Candidate generation The input to the candidate generation stage is the
activity sequence a1:T inferred by the previous stage, the location sequences time
series (τt, LT)1≤t≤T , and the description of public transportation routes and their
schedules P, This stage produces a trellis that has T slices in which the nodes
of slice t are the possible itinerary states St in which Alice may be at time τt
(e.g., traveling from stop A to stop B via bus route R), and in which the edges
represent possible itinerary state transitions (e.g., getting off the bus, getting into
a car, or getting on a bicycle). The set of candidate itineraries IC ⊂ I output by
this stage is defined as the set of paths from a node in the first slice to a node in
the last slice.

The nodes in each slice and the edges between consecutive slices are gener-
ated sequentially by processing the input activity sequence and the location
sequence time series in order. Initially, a set of itinerary states S1 is con-
structed using a1 and L1, then, for each t < T , St+1 is recursively defined
as St+1 = F (St, τt+1, at+1, Lt+1) = ⋃

s∈St f(s, τt+1, at+1, Lt+1), where f is a func-
tion that defines the set of possible states to which a state s can transition to,
depending on the predicted activity and the location of the next slice. The set of
edges Et between slices t− 1 and t is the set of pairs {(s, s̃)|s ∈ St−1, s ∈ f(s)}.

We now define the itinerary state space, the initial set of states S1, and the
state transition function f . The components of an itinerary state are:

• the user’s location estimate, defined by a point and a radius;

• the transportation mode amongM;

• the boarding public transportation stop and the trip pattern taken by the
user, which are defined if and only if the transportation mode is public (i.e.,
inMP);

• the state’s start time, which is equal to the boarding time when the trans-
portation mode is public;

• the alighting stop, which can only be defined if the transportation mode is
foot and which is used to indicate that to reach the current state the user
previously alighted from a public transportation vehicle at this stop;

• the erroneous activity counter, which is a positive integer.

The initial set of states S1 is defined as follows:

• The most recent location in L1 is the user’s location estimate for any state
in S1.

• A state is created for each non-public transportation mode (i.e., inM\MP).
The state’s start time is set to τ1.

• Public transportation trip patterns that are close to the user’s location
estimate are used to generate states whose transportation mode is public.
The boarding stop of each such state is any of the stops in the trip pattern
that are close. The boarding time (the start time) of each such state is
estimated from τ1 and the distance to the boarding stop.

5.6. Movup’s itinerary recognition algorithm 97

Let us now specify f by defining a set of sufficient and necessary conditions that
relate s to any s̃ in f(s, τt+1, at+1, Lt+1). Let s be a state at some t ∈ {1, . . . , T−1}
(i.e., s ∈ St). An itinerary state s̃ belongs to f(s, τt+1, at+1, Lt+1) if and only if
the following statements hold:

• If a non-⊥ location exists in Lt+1, s̃’s location estimate is equal to the
most recent location in Lt+1. Otherwise s̃’s location estimate is equal to s’s
location estimate if at+1 is Stationary, or equal to s’s location estimate
with the uncertainty raised by the maximum distance attainable over the
sampling period τ using s’s transportation mode (i.e., using the fastest
vehicle for this mode).

• s̃’s alighting stop is defined if and only if s’s transportation mode is public.

• If s and s̃ have different transportation modes, then at+1 is not Stationary
and the following statements hold:

– s̃’s start time is τt;
– s̃’s erroneous activity counter is equal to 0;
– if s’s transportation mode is not foot, then at+1 is MoveFoot, s̃’s

transportation mode is foot

∗ if s’s transportation mode is public then s̃’s alighting stop is
defined, follows s’s boarding stop in the stop sequence defined
by s’s trip pattern, is within range of s̃’s location estimate, and
within a confidence estimated trip time difference (i.e., τt minus
s’s boarding time is within a bounded distance to the scheduled
trip time between s̃’s alighting stop and s boarding stop for s’s
trip pattern);

– if s’s transportation mode is foot, then at+1 is MoveVehicle and s̃’s
transportation mode is vehicular (i.e., inMV);
∗ if s̃’s transportation mode is public then its departing public
transportation stop is within range of the location estimate of s̃
and its trip pattern departs from this stop.

• If s’s and s̃’s have the same transportation mode then they also have the same
boarding stop, trip pattern, start time, and alighting stop. Additionally,
exactly one of the following statements hold:

– the erroneous activity counter of s̃ is equal to 0 and either
∗ at+1 is Stationary,
∗ at+1 is MoveFoot and s̃’s transportation mode is foot,
∗ or at+1 is MoveVehicle and s̃’s transportation mode is not foot;

– or s’s erroneous activity counter is less than a threshold ε, s̃’s erroneous
activity counter is equal to s’s plus one, and either
∗ at+1 is MoveFoot and s̃’s transportation mode is not equal to foot

98 Chapter 5. Itinerary recognition

∗ or at+1 is MoveVehicle and s̃’s transportation mode is equal to
foot.

The above rules follow multiple intuitions. First, while slices where the MoveFoot
(resp. MoveVehicle) activity was detected by the previous stage should in
principle correspond to foot (resp. vehicular) itinerary states, the rules allow
vehicular (resp. foot) itinerary states to be used instead, up to a certain number
of consecutive times. This behavior allows the itinerary generation stage to
not rely on the activity recognition stage being perfectly accurate. Under some
circumstances, some of these inaccuracies may actually be hard to prevent, for
instance, the user may walk a considerable distance within a long train that
is moving. To prevent possibly erroneous states from extending over a long
period of time, the erroneous activity counter is used to keep track of the number
of consecutive times there is mismatch between the detected activity and the
itinerary state’s transportation mode. Another intuition is the idea that the
user’s transportation mode cannot change without significant movement. As
such, transportation mode changes between t and t+ 1 are only allowed when
at+1 is either MoveFoot or MoveVehicle. Finally, the rules take into account the
assumption that a transition between two segments of vehicular mobility requires
some period of pedestrian activity in-between (Zheng et al. 2010; Hemminki,
Nurmi, and Tarkoma 2013). To do so, the only allowed transitions are from a
vehicular transportation mode to a foot mode and vice versa.

Itinerary recognition Itinerary recognition, the last stage, takes as input
the set of candidate itineraries IC output by the candidate generation stage,
the sequence of feature vectors v1:T , and the activity sequence a1:T . The set of
candidate itineraries IC is encoded as the set of paths in a trellis with T slices from
a node in the first slice to a node in the last slice. The goal of this stage is to find
the path in this trellis representing the most likely itinerary with respect to the
set of observations O. To do so, this stage uses a linear-chain conditional random
field that models the conditional probability of a sequence of T itinerary states
given the observations. As in the activity recognition stage, the linear-chain
CRF uses T target variables Y1, . . . , YT and T observed variables X1, . . . , XT .
Each target variable Yt represents the user’s itinerary state at τt, and thus the
domain of Yt is St. Each observed variable Xt represents a tuple composed by
the time τt, the feature vector vt, the activity at, and the location Lt. Again,
both observation and transition factors are used to model the joint probability
distribution P (Y1:T , X1:T ; ρ), where ρ = (ρN , ρL) are the parameters. This time
however, the transition factors are slightly different as they take into account the
full sequence of observations at each t: φρL(Yt−1, Yt, X1:T). The observation factor
at t is written ψρN (Yt, Xt). In addition to observation and transition factors, the
itinerary recognition CRF uses for each t a bias factor χ(Yt−1 = s, Yt = s̃, Et)
that is equal to 1 when (s, s̃) is in Et and is equal to 0 otherwise:

P̃ρ(Y1:T , X1:T) =
T∏
t=2

χ(Yt−1, Yt, Et)φρL(Yt−1, Yt, X1:T)
T∏
t=1

ψρN (Yt, Xt).

5.6. Movup’s itinerary recognition algorithm 99

The bias factors force the joint probability distribution P (Y1:T , X1:T) to be zero
when the valuation of the sequence of target variables Y1:T is not a path in IC ’s
trellis, i.e., if it does not represent a candidate itinerary. For an itinerary state
s and an activity a, let V (s, a) ∈ M × {0, 1} = V be the pair formed by the
state’s transportation mode and a bit that is equal to 1 if and only if a is equal
to Stationary. Similarly to the activity recognition CRF, the observation factor
ψρN (Yt, Xt) is defined using the output of a feedforward neural network consisting
of multiple fully-connected layers. The neural network is applied to each vt,
yielding an output vector B(vt; ρN), where ρN are the parameters of the neural
network. The output vector B(vt; ρN) is a |M× {0, 1}|-dimensional real vector
defining the energies of each of the elements in V :

ψρN (Yt = s,Xt = (τt, vt, at, Lt)) = e−B(vt;ρN)(V (s,at)).

The log of each transition factor log φρL(Yt−1 = s, Yt = s̃, X1:T =
(τt′ , vt′ , at′ , Lt′)1≤t′≤T) is equal to:

−ρgL (g(s, at, s̃, at+1)) + ρhL ·H(s, s̃, (τt′ , at′ , Lt′)1≤t′≤T).

The first term in the above sum, −ρgL(g(s, at, s̃, at+1)), considers the transition
energies in the projected space V obtained via the mapping g : (s, at, s̃, at+1) 7→
(V (s, at), V (s̃, at+1)). Given that some itinerary state transitions are impossible
under the rules implemented by the itinerary generation stage, the image over
the set of adjacent itinerary states at each t by this mapping is given by

G = (MV × {0, 1})× {(foot, 1)} ∪ ({foot} × {0, 1})×
(MV × {1}) ∪ {((m,σ), (m̃, σ̃)) ∈ V2|m = m̃} ⊂ V2,

whose cardinal is |{0, 1}2||M|+2|{0, 1}||MV |. The energies associated to each
resulting transition are given by the |G|-dimensional parameter vector ρgL : G→
R|G|. The second term, ρhL · H(s, s̃, (τt′ , at′ , Lt′)1≤t′≤T), considers segment-wise
features that measure the suitability of a candidate segment of unimodal public
transportation. Since such measure can only be performed given information about
a complete public transportation segment (i.e., from boarding until alighting),
this term only materializes when (s, s̃) corresponds to a transition out of a public
transportation mode (i.e., when s̃ has an alighting stop). This term is written as
the dot product between the 7-dimensional feature vector function H applied to
(s, s̃, (τt′ , at′ , Lt′)1≤t′≤T) and the parameter vector ρhL. The seven features include
information about the boarding time, boarding stop, and trip pattern defined
by s, the alighting time and stop defined by s̃, and the activity and location
subsequences (τt′ , at′ , Lt′)ts≤t′≤t that coincide in time with the segment’s time
span (ts is the boarding time). The following segment-wise features are defined:

• Three features measure how well the shape of the segment’s location sequence
fits the shape of the trip pattern:

– the average geographical distance between the segment’s location
sequence and each of the non-underground passages and stops of the
trip pattern,

100 Chapter 5. Itinerary recognition

– the fraction of underground stops (e.g., underground metro stops)
within the route that match missing satellite positioning information,

– and the fraction of Stationary subsegments within the segment’s
activity sequence that match a stop of the trip pattern.

• Four features measure how well the segment’s boarding and alighting times
fit the schedule:

– the time difference between the boarding time and the scheduled
departure time of the trip departing immediately before (considering
the possibility that the previous trip was late),

– the time difference between the boarding time and the the trip imme-
diately after (considering the possibility that the next trip departed
early),

– the relative time difference between the segment’s duration (i.e., the
difference between the alighting time and the boarding time) and the
expected duration of the trip departing immediately before,

– and the relative time difference between the segment’s duration and
the expected duration of the trip departing immediately after.

The itinerary recognition model is trained in a similar way to the activity
recognition model used by the algorithm’s second stage. For the itinerary recog-
nition model, however, the sequences used as ground truth are harder to build,
since these are defined over the itinerary states that the candidate generation
stage generates. As such, these sequences can only be properly defined after a set
of candidate itineraries is generated from an activity sequence for the observed
journey. To build these sequences, we rely on a set of annotations that consist for
each journey of a segmentation of the time interval [τ s, τ e] where each segment is
defined by a transportation mode, and where applicable, a public transportation
route, a boarding stop, and an alighting stop. To train the model, the input to
the candidate generation stage that is used can be either the ground truth activity
sequence or the activity sequence predicted by the activity recognition stage,
which may contain errors. For the latter, the activity recognition model needs
to be trained beforehand. For each journey, after the set of candidate itineraries
IC is generated, the ground truth itinerary is obtained by computing the most
likely sequence y1:T in an auxiliary linear-chain CRF that uses the same target
variables and bias factors as the activity recognition model, no transition factors,
and an observation factor that assigns a relatively high observation energy to
itinerary states with the correct transportation mode, route, and stops. Finally,
the itinerary recognition model is trained similarly to the activity recognition
model by maximizing the likelihood:

P (Y1:T = y1:T |X1:T = (vt, at)1≤t≤T ; ρ)
over the parameters ρ using gradient descent. Again, once the model has been
trained, the most likely itinerary is computed using the Viterbi algorithm for
CRFs.

5.7. Evaluation 101

System implementation
The construction of the transportation networks from OSM data, the integration
of GTFS data, the enrichment of public transportation routes using the trans-
portation network models, and the integration of sensor data were implemented
using the Scala programming language (EPFL 2017). The system imports sensor
data collected from the Hup-me mobile application presented in Section 3.5 and
stored in CSV format into a relational database (PostgreSQL (PostgreSQL Global
Development Group 2017)). The relational database also holds a representation
of the transportation networks and a representation of public transportation
routes and their schedules.

In order to facilitate annotations, we developed a web interface that displays
for a recorded journey the location sequence on a map and sensor data in multiple
time series plots. The interface allows the annotator to divide the recorded
journey into segments of time with an associated transportation mode. When
the annotated transportation mode is public, the annotator also identifies route
as well as the boarding and alighting stops. In order to provide annotations
for the activity recognition stage, i.e., identify the moments where the vehicle
or the user was actually moving, the interface allows the annotator to further
divide each segment of unimodal transportation into Stationary, MoveFoot, and
MoveVehicle segments. Figure 5.7, Figure 5.8 and Figure 5.9 illustrate different
components of the annotation interface.

The candidate generation algorithm was implemented in C#. The neural
network and conditional random field models were written in Python using
TensorFlow, an open source software library for numerical computation and
machine learning using data flow graphs (Abadi et al. 2016).

5.7 Evaluation
In this section, we present an evaluation of our system. For this evaluation, we
constructed a set of transportation networks for the Paris region from OSM data.
It encompasses all roads and railways in this region. The following gives some
intuition on the size of these networks: the spatial network consists of 808,093
nodes, 1,045,052 road edges, and 34,414 rail edges.

Additionally, we gathered GTFS data from local agencies and partitioned the
set of trips into trip patterns. 3,412 trip patterns were found. Using the procedure
described in Section 5.2, we matched metro, train, and tram trip patterns to rail
paths in the corresponding transportation networks. Two examples of matched
trip patterns are shown in Figure 5.11. To give an idea of the performance of this
matching, we computed for each matched path the ratio of the path’s length to the
sum of the geographical distances between consecutive stops. Figure 5.12 shows
the distribution of these ratios. The average ratio is 1.053, and a good amount of
them are roughly normally distributed around 1.04 and 1.05. This is consistent
with the fact that trains closely follow the geodesics between consecutive stops.
The ratios above 1.10 correspond to trip patterns with long inter-stop distances
(e.g., because they skip stops or because they cover long distances). An example

102 Chapter 5. Itinerary recognition

Figure 5.7: A component of Movup’s annotation interface that shows the user’s
speed over time as measured by location sensors and features extracted from
accelerometer data. The annotator has selected a time interval roughly between
4:26 and 4:27 p.m. (16:26 and 16:27, as displayed) using the brush selector on
one of the time series. This interval is used to filter the points considered by the
speed and location accuracy distribution charts, but also the locations that are
shown on the map in Figure 5.8.

of a trip pattern that skips stops is given in Figure 5.13. This procedure seems
to work remarkably well for rail modes, given that it requires no training. As
mentioned before, given a ground truth, more advanced probabilistic models
requiring training could be tried as well. The information provided by this
alignment is useful for the recognition of itineraries using rail trip patterns, in
particular metro ones, as these patterns use a lot of underground stops and
passages.

To train and evaluate the different features of the itinerary recognition algo-
rithm, we use manual annotations. We collected about 850 journeys (about 750
hours) from users traveling within the Paris region. Among those, we annotated 87
journeys (47 hours) with the help of the web interface we developed for visualizing
journeys.

5.7. Evaluation 103

Figure 5.8: A component of Movup’s annotation interface that shows the locations
on a map corresponding to the time interval selected in the speed over time chart
in Figure 5.7. Circle and square points represent locations given by satellite and
network positioning sensors, respectively. The color rainbow gradient from blue
to red represents the time progression.

At the moment, we are still working on an evaluation of Movup. Next, we
show the results of our first evaluation that was conducted on the Hup-me system.
Hup-me was evaluated in parallel on a 16-core virtual CPU with 104 GB memory
implemented by a 2.3 GHz Intel Xeon E5 v3 CPU. We measured the execution
time of our algorithm with respect to the duration of a journey. The curve of
time as a function of the journey’s duration is roughly linear (Figure 5.14). On
average, Hup-me takes about 0.1638 seconds for each second in the observed
journey, the median being 0.108. In terms of memory consumption, Hup-me can
take up to 10 GB for some journeys.

Hup-me was evaluated on our set of 87 journeys. We measured the fraction of
time where a mode i was predicted as j out of all cases where the actual state of
the world is i. The results are presented in a confusion matrix (Table 5.2). To
present these results, we purposely merged the train and metro modes since the
dataset was not big enough. Additionally, when the algorithm guessed the correct
mode among bus, train, tram, we evaluated whether the correct transportation
route was detected (Table 5.3). Overall, the results are comparable to the state of
the art (Stenneth et al. 2011; Hemminki, Nurmi, and Tarkoma 2013), considering

104 Chapter 5. Itinerary recognition

Figure 5.9: A component of Movup’s annotation interface that shows the output
of Google’s activity recognition and features extracted from Wi-Fi and Bluetooth
sensors.

Predicted mode accuracy (%)
foot bike car bus train tram Time (min)

A
ct
ua

lm
od

e foot 87 8 1 1 2 1 1068
bike 2 98 0 0 0 0 69
car 5 2 82 10 0 0 718
bus 4 5 0 90 1 0 419

train 12 0 2 3 83 0 149
tram 15 3 6 1 0 75 129

Precision 91 36 96 80 81 92 2552

Table 5.2: The confusion matrix of Hup-me for the recognition of different
transportation modes. The train mode includes the metro mode.

that we infer a richer itinerary, including the recognition of public transportation
routes and stops. However, Hup-me has trouble distinguishing bus from car
segments but also between underground train routes, a problem that we hope
Movup will solve.

5.7. Evaluation 105

Figure 5.10: A component of Movup’s annotation interface that shows the features
extracted from GPS/GLONASS sensors, as well as the phone’s service status and
signal strength, the network connectivity, and screen status over time.

bus train tram

Accuracy (%) 95 78 99
Total Time (min) 381 127 98

Table 5.3: Hup-me’s public transportation route recognition performance.

106 Chapter 5. Itinerary recognition

(a) RER C, a rapid transit route, in the suburbs
of Paris.

(b) Line 4 of the Paris metropolitan. The section
shown is in the center of Paris, and is completely
underground.

Figure 5.11: The result of matching a train and a metro trip pattern extracted
from Paris public transportation data to paths in the rail transportation networks
created from OSM data. The red nodes represent the stops, and the numbers
indicate the order of stops in the trip pattern. Consecutive stops are linked by
red edges. The blue line represents the path that the trip pattern was mapped to
in the corresponding transportation network.

5.8. Related work 107

0.95 1 1.05 1.1 1.15 1.2 1.25 1.3
0

5

10

15

20

Figure 5.12: The distribution of the ratios of matched paths’ lengths to the sum
of geographical distances between consecutive stops of metro, train, and tram
trip patterns. This average ratio is 1.053.

5.8 Related work
Activity recognition The itinerary recognition task can be seen as an ad-
vanced instance of activity recognition. Activity recognition has gained increased
attention over the years in the fields of artificial intelligence, robotics, and ubiqui-
tous computing. Our work follows pioneering works published over the last ten
years on sensor-based activity recognition and most notably accelerometer-based
approaches (Bao and Intille 2004; Ravi et al. 2005; Maurer et al. 2006; Pärkkä
et al. 2006; Choudhury et al. 2008; Kwapisz, Weiss, and Moore 2011). A survey
and a taxonomy of the different activity recognition techniques that applies to
mobile phone sensor data can be found in Incel, Kose, and Ersoy (2013) and
Shoaib et al. (2015).

Transportation mode recognition More recently, several researchers have
focused on transportation mode identification (Wang, C. Chen, and Ma 2010;
Reddy et al. 2010; Zheng et al. 2010; Manzoni et al. 2010; Hemminki, Nurmi,
and Tarkoma 2013). Hemminki, Nurmi, and Tarkoma (2013) recognize the mode
among a rich set of public transportation modes: walk, car, bus, train, metro,
and tram. Using existing activity recognition techniques, we can determine at
any point in time whether the user is currently stationary, walking, running,
cycling, or in a motor vehicle. This technology is in fact already available to
application developers on the two most widespread smartphone platforms, namely
Android (Android Developers Guide 2013) and iOS (Apple Inc 2013). One of our

108 Chapter 5. Itinerary recognition

Figure 5.13: The result of matching a trip pattern belonging to Line 6 of the
Paris metropolitan to a path in the metro transportation network. The red
nodes represent the stops, and the numbers indicate the order of stops in the trip
pattern. Consecutive stops are linked by red edges. The blue line represents the
path that the trip pattern was mapped to in the corresponding transportation
network. The ratio of the blue line’s length to the red one is roughly 1.31.

goals is to determine the transportation modes and identify the path taken by the
user over the course of her journey. To serve this purpose, and provide context
awareness to public transportation navigation technologies, GPS-based activity
tracking mobile applications were developed to track the user’s most frequent
locations, travel routines, transportation modes, and paths taken (Ashbrook
and Starner 2003b; Liao, Patterson, et al. 2007; J. Chen and Bierlaire 2015).
Location-based vehicle tracking has also been successfully used to automatically
generate accurate public transportation maps and schedules and provide real-
time information about traffic delays (Thiagarajan, Ravindranath, et al. 2009;
Thiagarajan, Biagioni, et al. 2010; Biagioni et al. 2011).

Itinerary recognition Our interest is to provide Alice with an accurate sum-
mary of her itinerary. To this respect, our work is closely related to Liao, Patterson,
et al. (2007); J. Chen and Bierlaire (2015). They use a combination of online
activity recognition techniques and location-based map matching. However, these
works do not distinguish between overlapping public transportation routes with
different schedules and do not handle long periods of missing satellite-based

5.8. Related work 109

10 100

1

10

journey duration (min)

ex
ec
ut
io
n
tim

e
(m

in
)

Figure 5.14: The execution time of Hup-me with respect to the duration of the
journey.

positioning. To this respect, Thiagarajan, Biagioni, et al. (2010) provided a
framework for performing tasks related to these problems: recognizing whether
the user is on a vehicle, differentiating bus from car travel, identifying the bus
route, and tracking the user inside an underground metro system. However,
their framework was aimed toward and used for delivering improved transit
information to other users rather than providing users with accurate summaries
of their journeys. Their work was nonetheless one of the first to use static public
transportation schedules to track the user in the transportation network. More
recently, Stenneth et al. (2011) started used real-time schedule updates, but these
are used for real-time tracking and are not used to infer an itinerary.

Map matching For navigating through road networks, the task of recognizing
the path taken by a user in the road network, in particular from locations derived
from satellite-based positioning, is known as map matching. Map matching
requires a logical model of the world such as a spatial network (Barthélemy 2011).
Map matching can be seen as a particular kind of activity sequence recognition, in
which the observations are locations and the recognizable activities are positions
and paths in the road network. Some indoor localization and tracking problems
involve recognizing both the position (e.g., entrance, office, cafeteria) and activity
(e.g., chatting, using a computer, having coffee) of multiple people in an indoor
environment (Bui, Venkatesh, and West 2002; Oliver and Horvitz 2005). An
exhaustive survey of map-matching techniques can be found in (Quddus, Ochieng,
and Noland 2007) and more recent results in (Lou et al. 2009; Newson and Krumm

110 Chapter 5. Itinerary recognition

2009; Hunter, Abbeel, and Bayen 2014).

Sequence recognition For recognizing sequences of states from observations,
there exist plenty of models and techniques: hidden Markov models, dynamic
Bayesian networks, conditional random fields (Koller and Friedman 2009a), and
recurrent neural networks (Goodfellow, Bengio, and Courville 2016b). These
supervised machine learning techniques fall under the umbrella term of structured
prediction (Bakir et al. 2007). In particular, they have been applied to great
success in different natural language processing tasks (Settles 2004; Huang, Xu,
and Yu 2015; Andor et al. 2016), such as speech recognition (Graves, Mohamed,
and Hinton 2013) and handwriting recognition (Graves, Liwicki, et al. 2009). In
our first system, Hup-me (Montoya and Abiteboul 2014; Montoya, Abiteboul,
and Senellart 2015), we used a dynamic Bayesian network to infer the path
taken by the user over a multimodal transportation network. However, as stated
by Hunter, Abbeel, and Bayen (2014), dynamic Bayesian networks encounter
the selection bias problem, which is especially problematic at low observation
frequencies. Instead, they use a conditional random field, which is also the kind of
model that Liao, Fox, and Kautz (2007) use the kind we use in Movup. Differently
however, Movup uses a CRF whose feature functions are based on the output
of a neural network. This kind of setup has been successfully applied to the
part-of-speech tagging task in natural language processing (Andor et al. 2016).

5.9 Conclusion

We have presented a method for inferring the transportation mode and routes
of the user from rich mobile device (smartphone) sensor data. Our work is, to
our knowledge, the first one considering such a complex transportation network,
i.e., a multimodal one distinguishing public transportation routes and schedules,
and with such a rich combination of user data, i.e., including data from location
sensors, the accelerometer, and radio networks (cellular network, Wi-Fi, and
bluetooth). For instance, we take into consideration schedules to counter the
possibility of geographic overlap between several transportation modes and routes.
Another novelty of our approach is in the processing of long periods of time
without location data, which happen frequently in high density urban areas and
especially within underground transit systems. At the moment, we are conducting
a thorough evaluation of Movup and would like to present it in the near future.
We would also like to release the part of the dataset that was collected and
annotated, from consenting users, so that researchers can use it.

Hup-me, our first version, showed promising results, and gave us a better
understanding of the difficulties inherent to this problem. In particular, it
showed how difficult it is to use a single probabilistic model to capture the many
dimensions of an itinerary (i.e., the transportation mode, the route, the stops,
and transition times) and relate them directly to the observations. It may seem
that the state space required by such a model would need to be large in order
the take into account the important aspects of the problem:

5.9. Conclusion 111

• The need to use segment-wise features for distinguishing public transporta-
tion modes and routes, e.g., the vehicle’s trip time and possible schedule
delay, and the number and frequency of stops over this period. Classic
probabilistic models for sequence recognition use fixed-length time frames
and inter-frame independence assumptions to model itinerary states and
their relationships, which is not suited for calculating segment-wise features.

• The need to consider stationarity as an extra dimension in addition to the
user’s transportation mode when performing transportation mode sequence
prediction. For instance, when Alice is on foot or when she travels in a bus,
she or the bus may stop at a red light. Assuming that whenever the bus
stops its engine also stops (e.g., if the vehicle has an electric engine or a
start-stop system), the sensor observations made during a stop period may
not be sufficient to distinguish between foot and bus modes. During such a
period, the prediction system should indeed recognize Alice as stationary,
but the prior probabilities that the prediction transitions during the next
time frame into a foot or bus moving state should take into account the
fact that everytime the bus stops, Alice will more often stay on it than she
will alight from it. Similarly, modeling the possibility that Alice may walk
within a public transportation vehicle such as a bus, a train, a tram, or a
metro may also be useful, thus differentiating between the user’s human
activity and her transportation mode (e.g., pedaling on a bicycle, or sitting
on a bus).

• Recognizing underground public transportation routes within the user’s
journey requires a specialized kind of processing. On the one hand, the
information that the user is underground and moving inside a vehicle serves
to limit the possible transportation routes to underground ones, which
reduces the state space. On the other hand, continuously missing location
information may increase over time the size of the estimated area in which
the user may be, increasing possible number of candidate routes. The most
useful information in this case is the topology of the underground network
and the number of stops and time that are required by each route to move
from one place to another.

Finally, one of the main motivations behind the work presented in this chapter
is to enrich Alice’s personal knowledge base, so that we can use it for more
advanced personal analytics or to help an intelligent personal assistant provide
more relevant navigation feedback. In the next chapter, we present a system that
we designed to realize such a personal knowledge base.

Chapter 6

Personal knowledge integration

This work has been carried out in collaboration with Thomas Pellissier
Tanon from ENS Lyon, who spent some months in our team at Inria
as part of his master’s internship, and researchers from Télécom
ParisTech, namely Fabien M. Suchanek and Pierre Senellart. Part
of the content of this chapter was presented in (Montoya, Pellissier
Tanon, et al. 2016), where our PIM system was demoed and a short
overview of it was provided. Dominique Tran and François Camus
from ENGIE also contributed in the making of this demo. This chapter
includes a more thorough description and evaluation of this system.

In this chapter, we present Thymeflow1, a system that we designed to investi-
gate the notion of a personal information management system (cf. Section 1.4).
With this system, the goal is to put Alice back in control of her personal informa-
tion. We present a description and evaluation of this system.

6.1 Introduction
The system’s main goal is knowledge integration (introduced in Section 2.3)
from multiple heterogeneous sources of personal information. Knowledge is
integrated into a personal knowledge base (KB) (see Section 2.2 for a definition),
providing Alice with a high-level global view of her personal information, which
she can use for querying and analysis. This integration, together with powerful
query capabilities, are needed for performing more relevant personal analytics
(understood as in Section 2.3), and possibly prediction and recommendation.

The system is open-source2, meant with extensibility in mind, and designed
to be installed on a machine that Alice controls, i.e., on her personal computer or
on a private server. In such a setting, her privacy is preserved by the fact that
the KB remains on this machine, and that all integration and analysis happens
locally.

The system’s secondary goal is to facilitate the automatic enrichment of
personal information. It provides a framework for running sophisticated algorithms

1http://thymeflow.com/
2https://github.com/thymeflow

113

http://thymeflow.com/
https://github.com/thymeflow

114 Chapter 6. Personal knowledge integration

using the knowledge present in the KB to automatically derive new facts. This
framework is itself used to implement some of the tasks involved in knowledge
integration, such as entity resolution and spatiotemporal alignments. To test the
framework’s ability to generalize to other algorithms, we also used it to implement
the stay extraction algorithm, Thyme, that we presented in Chapter 4

Finally, we do not want to create a new information silo via this system.
First, we do not want this system to re-implement functionalities existing in
more specialized tools, such as reading and writing email messages, calendar
management, or document filing. Second, the system allows knowledge to be
pushed from the KB back to the sources, effectively implementing two-way
synchronization (cf. Section 2.3). Via this functionality, we want Alice to keep
using her applications as usual while enjoying augmented knowledge derived by
Thymeflow. Additionally, this functionality can provide the basis for automatic
multi-device and multi-system synchronization.

Challenges Designing such a personal KB is challenging. Data of completely
different nature has to be modeled in a uniform manner, pulled into the knowledge
base, integrated with other information, and kept synchronized with the sources
when changes occur. For example, we have to find out that the same person
appears with different email addresses in address books from different sources.
Standard KB alignment algorithms do not perform well in our scenario, as we
show in our experiments. Furthermore, our integration task spans information of
different modalities, for instance, if we want to create a coherent user experience,
we have to match events in the user’s calendar with locations in her location
history and place names.

Results Our system is fully functional and implemented. It can, e.g., provide
answers to questions such as:

• Who has been contacted the most by Alice in the past month? (Requiring
alignments of the different email addresses.)

• Where did Alice have lunch with Bob last week? (Requiring an alignment
between the calendar and the location history.)

• How many times did Alice go to Bob’s place last year? (Requires an
alignment between the contact list and the location history.)

• What are the telephone numbers of the Alice’s birthday party guests?
(Requiring an alignment between the calendar and the contact list.)

This chapter is structured as follows: Section 6.2 describes the system, its
architecture and implementation. Section 6.3 details our knowledge enrichment
processes. Section 6.4 discusses experimental results. Section 6.6 the related
work, and Section 6.7 concludes

6.2. The system 115

6.2 The system
Model Thymeflow’s KB implements the representation model of a personal
knowledge base described in Section 2.2, which is based on an RDFS ontology.
In summary, this models captures the concepts of events, agents, messages,
locations, stays and places. Additionally, it captures the provenance of knowledge
(using RDF named graphs), which it uses to distinguish between observed and
inferred statements. Finally, it allows representing that two instances of a concept
(identified by two distinct IRIs) are facets of the same real-world entity.

Mediation vs. Warehouse One can first see the KB as a virtual view over the
personal information sources. The sources are queried in a mediation style (Garcia-
Molina et al. 1997), loading the data only on demand. However, accessing,
analyzing and integrating these sources on the fly are expensive tasks. In some
cases, the integration may require iterating through the entire source, which
can be prohibitively costly in the case of emails. Also, we want to avoid having
to redo the same inferences. For instance, suppose that we had automatically
inferred that an event in the calendar took place at a certain location. We do not
want to infer this piece of information again. Our approach therefore loads the
sources into a persistent store, in a style that enriches the data warehouse.

System overview Our system is a web application that Alice installs on her
machine. Using its web interface, she provides the system with a list of information
sources (such as email accounts, calendars, or address books), together with
authorizations to access them (such as tokens or passwords) (Figure 6.2). The
system accesses these information sources (as she would), and pulls in the data.
It uses adapters to access the sources, and to transform the data into RDF.
The supported adapters are described in Chapter 3. They may access Alice’s
email messages, address books, calendars, social network services (Facebook), and
location history. While new information is being loaded, the system automatically
performs inferences and the whole is consolidated in the KB (a triple store). Since
the KB is persistent, the system can be stopped and restarted without losing
information. At any time, she may use the interface to query the KB using the
SPARQL 1.1 query language (Harris and Seaborne 2013) (extended with full-text
search of RDF literals), and visualize the results on a table, on a map or as
a graph. She may also write SPARQL update queries (Polleres, Passant, and
Gearon 2013) to change the knowledge contained in the KB. The system runs
locally on Alice’s machine, and she may also define the kind of inferences that
may be automatically performed. Thus, she remains in complete control of her
data.

Architecture One of the main challenges in the creation of the KB is the
temporal factor: information in the sources may change, and these updates have
to be reflected in the KB. These changes can happen during the initial load time,
while the system is asleep, or after some inferences have already been computed.
To address these dynamics, our system uses software modules called synchronizers

116 Chapter 6. Personal knowledge integration

and enrichers. Figure 6.1 shows the synchronizers S1, . . . , Sn on the left, and the
enrichers E1, . . . , Ep in the center. Synchronizers are responsible for accessing the
information sources. Enrichers are responsible for inferring new statements, such
as alignments between entities obtained by entity resolution.

These modules are scheduled dynamically. For example, some modules may
be triggered by updates in the information sources (e.g., an update in a calendar
event) or by new pieces of information derived in the KB (e.g., the alignment
of a position in the location history with a calendar event). The modules may
also be started regularly (e.g., daily) for particularly costly alignment processes.
Generally, when a synchronizer detects a change in a source, it triggers the
execution of a pipeline of enricher modules, as shown in Figure 6.1. Enrichers can
also use knowledge from external data sources, such as Wikidata (Vrandečić and
Krötzsch 2014), Yago (Suchanek, Kasneci, and Weikum 2007), or OpenStreetMap,
as shown in the figure.

Assuming that the output of enrichers is deterministic and does not depend
on the order in which updates are processed, the content of the KB is entirely
determined by the information contained in the sources. Inferred knowledge is
not automatically reflected in the sources. However, Alice’s update queries may
result in knowledge being pushed back to the sources. The Updater module is
responsible for this, as we describe in Section 6.2.

Loading
Synchronizer modules are responsible for detecting changes in an information
resources, retrieving new information, and pushing the updated knowledge to the
Loader. They implement the adapters described in Section 2.2 to extract personal
information from various sources and transform them into RDF statements. The
adapters use synchronization mechanics to efficiently detect and retrieve new
information in a source, which is packaged into a document (see Section 2.2 for a
definition) containing the new knowledge and meta-information about the source.
This is of course relatively simple for information sources that provide an API
supporting changes, e.g., CalDAV. For others, this requires more processing. The
Loader persists the knowledge contained within each new document into the KB,
and transforms it into a delta ∆0. ∆0 consists of a set of RDF statement insertions
and a set of deletions. The Loader then triggers the pipeline of enrichers with
this delta.

Enrichment
After loading, enricher modules perform inference tasks such as entity resolution,
event geolocation, and other knowledge enrichment tasks. We distinguish between
two kinds of enrichers. The first kind takes as input the entire current state
of the KB and applies to it a set ∆ of enrichments (i.e., new statements). For
instance, this is the case for the module that performs entity resolution for agents.
The second type of enricher works in a differential manner: it takes as input the
current state of the KB, and a collection of changes ∆i that has been pushed by

6.2. The system 117

P1

Pn Personal
Information

Sources

S1

Sn Loader

E1

Ek

Ep

Knowledge
Base

X1

Xm Query Answering
Data Analysis
Data Browsing
Visualization

User updates
INPUT

SPARQL

∆0

∆1
∆k−1

∆k

∆p−1

Enricher Pipeline

Synchronizers

External
Sources

Updater

Figure 6.1: The system architecture of Thymeflow.

 SERVICES

Microsoft

0

Email

0

Facebook

0

Google

0

File

0

Figure 6.2: The web user interface of Thymeflow for configuring new sources.
Alice can authenticate to any of the above service providers to connect them to
the system. She can also directly upload files (e.g., vCards) to the system.

118 Chapter 6. Personal knowledge integration

the Loader or an enricher that comes before it in the pipeline. It computes a new
collection ∆i+1 of enrichments that it pushes down the pipeline. Intuitively, this
allows reacting to changes of an information source. For instance, when a new
event entry is entered in the calendar with an address, a geocoding enricher is
called to attempt to locate it. Another enricher will later try to match it with a
position in the location history.

Provenance
The system records the provenance of each newly obtained piece of information.
For synchronizers, this is the information source, and for enrichers it is the enricher
itself. As presented in Section 2.2, knowledge is organized in documents, which
are collections of statements with the same provenance..

For instance, the statements extracted from an email message by an email
synchronizer connected to Alice’s email server via IMAP will be packaged into a
document that is identified by an IRI that is the concatenation of the server’s URL,
the message’s folder path, and the message’s id. The source is the email server’s
URL, which is an instance of personal:ObservationSource. In order to gather
different kinds of data sources (e.g., CardDAV, CalDAV, and IMAP servers) that
belong to a single provider (e.g., Google or corporate IT services) and to which
Alice accesses using the same account, we use an instance of personal:Account.
Sources that belong to the same account are related to this account via the
personal:sourceOf property.

On the other hand, the statements inferred by an enricher are packaged into
documents whose associated source is the enricher. Each enricher has its own IRI
and is an instance of personal:InferenceSource.

Provenance in our system can be used for answering queries such as “What
are the meetings scheduled for next Monday that are recorded in Alice’s work
calendar?” For this we need to use the provenance of the meetings, i.e., the work
calendar.

Pushing to the source
Finally, the system allows the propagation of information from the KB to the
sources. These can be either insertions/deletions derived by the enrichers or
insertions/deletions explicitly specified by Alice. For instance, consider the
information that different email addresses correspond to the same person. This
information can be pushed to the sources, which may for example result in
performing the merge of two contacts in Alice’s list of contacts. To propagate the
information to the source, we have to translate from the structure and terminology
of the KB to that of the source and use the API of that source.

Some sources hold information that cannot be updated from the KB, for
example email messages. By contrast, CardDAV contacts can be updated. Alice
can update the KB by inserting or deleting knowledge statements. Such updates
to the KB are specified in the SPARQL Update language (Polleres, Passant, and
Gearon 2013). The Updater is responsible for intercepting these updates, and

6.2. The system 119

propagating them to the sources or sending them to the Loader, which makes
them persistent and then runs the enricher pipeline. The semantics of propagation
is as follows.

If a target is specified (by containing the statements in the named graph of a
source), the system tries to propagate the new information to that specific source.
If the operation fails, the error is reported to Alice.

Now consider the case when she does not explicitly specify a source where to
propagate. For an insertion, the system tries to find all applicable data sources for
the operation. All sources where the subject of the statement is already described
(i.e., all sources that contain a statement with the same subject) are selected. If
no source is able to register an insertion, the system performs the insertion in a
special graph in the KB, the overwrite graph.

For a deletion, all sources that contain the deleted triple are selected. Then
the system attempts to perform the deletion on the selected sources. If one source
fails to perform a deletion (e.g., a source containing the statement is read-only),
the system removes the statement from the KB anyway (even if the data is still
in some upstream source) and adds a negated statement to the overwrite graph
to remember that this statement should not be added again to the KB. The
negated statement has the same subject and object as the original statement
but uses a negated version of the predicate. It should be seen as overwriting the
source statement. Alice can also specify the deletion of a statement inferred by
an enricher (either a specific one with a target, or any). Besides the deletion of
the statement from the KB, a negative statement is also added to the overwrite
graph. This prevents enrichers from rederiving these statements.

Implementation
The system was implemented as two separate components: the back end and the
front end.

Back end The back end’s essential components are the supervisor, the synchro-
nizers, the Loader, the Updater, the enricher pipeline, the KB (a triple store),
and a web API. It is written in Scala (EPFL 2017) and uses the Akka Actor
Model (Lightbend Inc. 2017) to orchestrate the different interactions between its
components. This model is based on actors, which are lightweight processes that
asynchronously communicate with each other through message passing.

The supervisor is responsible for launching the different actors and ensures
the recovery of each actor in the case it crashes. In our implementation, each
synchronizer runs on a separate actor and sends messages containing documents
to the Loader when a source has new information. The Loader is also an actor.
It maintains a connection to the KB that it uses to persist new information and
calculate the first delta (∆0). To trigger the enricher pipeline, the Loader sends a
message to it containing this delta.

The enricher pipeline runs on a single actor that is responsible for providing
the first enricher with each received ∆0 and then transmitting the delta output
by each enricher to the next enricher in the pipeline. Since information in sources

120 Chapter 6. Personal knowledge integration

may significantly change or sources may be plugged at any time, the system needs
to be able to extract and process a large volume of information at any time. To
efficiently manage this volume of information, we use Akka’s implementation of
Reactive Streams (Reactive Streams Special Interest Group 2017), which allows
the system to put back-pressure on the synchronizers so to slow them down in
the case the loader or the enricher pipeline still have a lot of deltas to process.
This prevents synchronizers from building up buffers of unbounded amounts of
data. Synchronizers are responsible for keeping documents small so as to ensure
that the pipeline’s buffers take a bounded amount of memory.

The back end’s KB is a Sesame based triple store (Broekstra, Kampman,
and Harmelen 2002), which is known as RDF4J (Eclipse Foundation 2017). It
is equipped with a SPARQL 1.1 compliant engine (Harris and Seaborne 2013)
and a full-text search extension based on Apache Lucene (The Apache Software
Foundation 2017b).

Finally the back end’s web API consists of a SPARQL endpoint and a RESTful
JSON endpoint. SPARQL read queries are executed directly by the triple store
and allows arbitrary querying of the KB. SPARQL update queries are sent to
the Updater, which asynchronously asks the synchronizers if they can handle the
updated statements and stores them in the KB if not. The RESTful endpoint
is used for configuring the synchronizers, and querying the current status of the
system (i.e., what synchronizers are running and their status). The web API is
implemented using Akka HTTP.

Front end The front end implements the web user interface as a single-page web
application. It is written using Ember.js (Tilde Inc. 2017), which is a framework
for implementing single-page web applications following the model-view-view-
model pattern. It compiles to a set of HTML, CSS, JavaScript files that are
served to Alice’s browser by a web server that is separate from the back end. The
front end asynchronously communicates with the back end using the SPARQL
and RESTful endpoints.

The front end is composed of a component for configuring new sources, another
for querying and visualizing results, and two specialized components: contacts
and timeline. The contacts component shows a list of all the personal:Agent
entities in the KB. For each personal:Agent entity, the component also lists the
attributes of each its facets and their respective sources (Figure 6.3). The Timeline
component is used to visualize personal:Stay instances, and the links they have
to events (Figure 4.5b). The visualization component uses the OpenLayers (Team
2017) library for map visualizations and the D3.js (Bostock 2017) library for
graphs visualizations. Finally, the front end has a status bar that displays the
current status of the system and keeps a history of the SPARQL queries that
have been run.

Extensibility It is straightforward in Thymeflow to plug new information
sources, new enrichment algorithms (i.e., inference, analytics), or new ontologies.
In particular, the architecture clearly separates knowledge extraction from enrich-
ment facilities. To facilitate the development of synchronizer or enricher modules,

6.2. The system 121

 Alice Springs

 contact@alice.thymeflow.com
 alice.springs@gmail.com
 asprings@icloud.com
 alice@thymeflow.com
 a.springs@example.com
 2_dqweokflakiemcsald@thymeflow.com
 2_gq2dimryheydmnzg@thymeflow.com

Full name Alice Springs
 A. Springs
 Alice S.
 alice springs

Given name Alice

Family name Springs

 +33 1 99 99 99 99
 +33 7 99 99 99 99

 http://thymeflow.com/personal#Service/Google/alice%40thymef…
 http://thymeflow.com/personal#Service/Google/alice%40thymef…
 http://thymeflow.com/personal#Service/Google/alice%40thymef…
 http://thymeflow.com/personal#Service/Google/alice%40thymef…
 http://thymeflow.com/personal#Service/Google/alice%40thymef…
 http://thymeflow.com/personal#Service/Google/alice%40thymef…
 https://graph.facebook.com/101983248
 https://graph.facebook.com/AaKkDS‐GQ_YJU5EuGkE24FKxdQ2El
 urn:uuid:fa6b49fd‐9b1f‐32ce‐b05f‐ffcddf64c35
 urn:uuid:c6f351df‐4bba‐41fb‐a86e‐a4d2b67515f8

Figure 6.3: A view of Alice’s own agent entity in Thymeflow’s contact component.
Her different email addresses, names, pictures, and telephone numbers are shown.
Each attribute has one or many provenance annotations (e.g., Facebook, her
Google calendar, her email, or her address book). At the bottom, the different
facets of this entity are shown, identified by their IRIs.

122 Chapter 6. Personal knowledge integration

an API is provided for modeling knowledge and handling differential updates.
The systems encourages the reusability of converters of small units of information,
such as the normalization of a telephone number and its representation in RDF.
However, the code is not yet modular and requires that synchronizers and enricher
modules be compiled within the same project.

6.3 Enrichers
In this section, we describe three specific enrichers included in our system: stay
extraction, agent matching, and event geolocation.

Stay extraction
The system implements the stay extraction algorithm described in Chapter 4 as
an enricher. This enricher processes personal:Location instances and outputs
a set of personal:Stays that it persists in the KB.

Agent matching
The KB keeps knowledge as close to the original sources as possible. Thus,
the knowledge base will typically contain several facets of the same person, if
that person appears with different names and/or different email addresses. We
call agent matching the task of identifying equivalent agent facets. The task
of identifying facets of the same real-world entity is known as entity resolution
in the context of information integration (cf. Section 2.3). In our case, we use
techniques that are tailored to our personal KB: identifier-based matching and
attribute-based matching.

Identifier-based matching We can match two facets if they have the same
value for some particular attribute (such as an email address or a telephone
number) that determines the entity in some sense. This approach is commonly
used in entity resolution Section 2.2 to achieve a high precision result, but the
result may suffer from low recall. In our case, it gives fairly good results for
linking agent facets extracted from email messages with the ones extracted from
address books. We are aware that such a matching may occasionally be incorrect,
e.g., when two spouses share a mobile phone or two employees share the same
customer relations email address. In our experience, such cases are rare, and we
postpone their study to future work.

Attribute-based matching Identifier-based matching cannot detect that
jdoe@gmail.com and john.doe@hotmail.com are the email addresses of the same
person. In some cases, attributes other than email addresses may help. For in-
stance, two agents instances with the same given and family names have a higher
probability to represent the same entity than two instances with different names,
all other attributes being equal. In our schema, the following attributes can help

6.3. Enrichers 123

the matching process: schema:name, schema:givenName, schema:familyName,
schema:birthDate, schema:gender, and schema:email.

We tried the holistic instance matching algorithm suited for RDF graphs
described in Suchanek, Abiteboul, and Senellart (2011), which we adapted for
our setting. The results turned out to be disappointing (cf. experiments in
Section 6.4). We believe this is due to the following:

• Missing attributes: for instance, almost all agent instances have a
schema:email and possibly also have a schema:name, but most of
them lack schema:givenName, schema:familyName, schema:gender, and
schema:birthDate attributes.

• Imprecision: names extracted from email messages may contain pseudonyms,
abbreviations, or may lack family names, and this reduces matching preci-
sion. Some attributes may appear multiple times with different values.

• Lack of good priors: we cannot reliably compute name frequency metrics
from Alice’s knowledge base or an external one, since duplicates may exist
even within a single information source or it may be the case that a rare
name appear frequently for different agents instances if a person with that
name happens to be a friend of Alice.

Therefore, we developed our own algorithm, AgentMatch, that works as follows:

1. For each agent instance a, let ρ(a) be the number of events or messages it
is directly related to and let ω(w, a) be the occurrence frequency of a word
w in the set of schema:name attributes of a (e.g., the occurrence frequency
of “John” in a class whose names are “John Doe” and “Johnny Doe” is 0.5)

2. The set of personal:Agent instances is partitioned using the equivalence
relation computed by the Identifier-based Matching technique previously
described. The set of equivalence classes is denoted C.

3. For each equivalence class C ∈ C and each word w, let ψ(w,C) be the
arithmetic mean of the occurrence frequencies of all the instances a in C
(i.e., the ω(w, a)’s for a ∈ C) weighted by their respective ρ(a). ψ(w,C) is
called the occurrence frequency of w in C.

4. For each word w found in the set of schema:name attributes, the inverse
document frequency idf(w) of this word is computed, where the set of
documents is the set of equivalence classes C and the number of documents
where w appears is replaced by the sum of w’s occurrence frequencies in
the different equivalence classes:

idf(w) = log |C|∑
C∈C

ψ(w,C)
.

124 Chapter 6. Personal knowledge integration

5. Let f be a string similarity metric between words. Let a best f -matching
of words between two strings A and B be a maximum weight matching in
a weighted complete bipartite graph whose parts U and V are respectively
the words in A and B and in which the weight of an edge is the f -similarity
between its nodes. Let df be a string distance function that first finds a best
f -matching of words between two strings, and then returns the arithmetic
mean of the f -similarities between the pairs of matched words weighted by
the sum of their respective inverse document frequencies.

6. The similarity Ff (between 0 and 1) between two equivalence classes is the
arithmetic mean of the df -similarities between the schema:name attributes
in one class and the ones in the other class weighted by the product of their
respective occurrence frequencies.

7. The pairs for which the similarity Ff is above a certain threshold are
considered to be facets of the same real-world entity.

The string similarity metric f that we use is based on the Levenshtein edit-distance,
after string normalization (accent removal and lowercasing). In our experiments,
we have also tried the Jaro-Winkler distance. For performance reasons, the
algorithm uses a 2/3-gram-based index of the words in schema:name attributes,
and only consider in Step 6. of the above process the pairs of equivalence classes
with a ratio of q-grams in common for at least one word greater than or equal to
some value S. For instance, two classes whose respective schema:name attributes
are “Susan Doe” and “Susane Smith” would be candidates. We evaluate the
performance of these agent matching techniques in our experiments.

Geolocating events
In this section, we discuss the geolocation of events, i.e., how an enricher providing
this functionality can detect for example that Monday’s lunch was at “Shana
Thai Restaurant, 311 Moffett Boulevard, Mountain View, CA 94043”. For this,
the input is the set of stays extracted by the stay extraction enricher from Alice’s
location history. The enricher performs spatiotemporal alignment between these
stays and the events in her calendars. Finally, geocoding is used to provide
semantics to the event’s location, such as the name of the place and the street
address.

Matching stays with events Matching calendar events with stays turns out
to be difficult because:

1. The location of an event (an address and/or geo-coordinates) is often
missing.

2. When present, an address often does not identify a geographical entity, as
in “John’s home” or “room C110”.

6.4. Experiments 125

3. In our experience, start times are generally reasonable (although a person
may be late or early for a meeting). However, the duration is often not
meaningful. For instance, around 70% of the events in our test datasets
were scheduled to last one hour. However, among the 1-hour events that
were matched, only 9% lasted between 45 and 75 minutes.

4. Some stays are incorrect.
Because of (1) and (2), the enricher does not rely much on the event locations
that appear in Alice’s calendars. A stay is matched to an event primarily based
on time: the time overlap (or time proximity) and the duration. In particular, a
stay is matched to an event if the ratio of the duration of the overlap period to
the duration of the entire stay is greater than a threshold θ.

As we have seen, event durations are often unreliable because of (3). Our
method still yields reasonable results because it tolerates errors on the start time
of the stay. For long stays, this is because of their long duration, while for short
ones, this is because calendar events are usually scheduled for at least one hour.
If the event has geographic coordinates, we filter out stays that are too far away
from the location defined by these coordinates (i.e., when the distance is greater
than δ). We discuss the choice of θ and δ for this process in our experimental
evaluation in Section 6.4.

Geocoding event addresses Once stays have been matched to events, the
idea is to attach richer place semantics (e.g., the country, street name, postal
code, or place name) to events. If an event has an explicit address, a geocoder
is used. A geocoder takes as input a raw street address or the name of a place
(such as “Stanford”) and returns the geographic coordinates of matching places,
as well as structured street address and place information. The enricher only
keeps the geocoder’s most relevant result and adds its attributes (geographic
coordinates, identifier, street address, etc.) to the location in the knowledge
base. The system allows the use of different geocoders, including a geocoder
that combines the results from both Google Places and Google Maps Geocoding
APIs (Google 2017b), and Photon (komoot 2017), which is a geocoder that uses
OpenStreetMap data.

Geocoding events using matched stays For events that do not have an
explicit address but that have been matched to a stay, we use a geocoder to
transform the geographic coordinates of the stay into a list of nearby places. The
most precise result is added to the location of the event. If an event has an
explicit address and has been matched to a stay, we call the geocoder on this
address, while restricting the search to a small area around the location of the
stay.

6.4 Experiments
In this section, we present the results of our experiments. We used datasets
from two users, Angela and Barack (actual names changed for privacy). Angela’s

126 Chapter 6. Personal knowledge integration

load from restart from
remote services local files local KB backup

w/ email bodies & full-
text search

yes no yes no yes no

MacBook Air 2013
(Intel i5-4250U 2-core 1.3GHz

4GB RAM, SSD)

28 14 13 7.0 0.70 0.67

Desktop PC
(Intel i7-2600k 4-core 3.4GHz

20GB RAM, SSD)

19 10 4.0 2.6 0.22 0.20

Table 6.1: The loading time performance of Angela’s dataset into Thymeflow’s
KB (in minutes). Angela’s dataset leads to the creation of 1.6M triples.

dataset consists of 7,336 emails, 522 calendar events, 204,870 location points, and
124 contacts extracted from Google’s email, contact, calendar, and location history
services. This corresponds to 1.6M triples when loaded into the KB. Barack’s
dataset consists of 136,301 emails, 3,080 calendar events, 1,229,245 location points,
and 582 contacts extracted from the same kinds of sources. Within the KB, this
corresponds to 10.3M triples.

KB construction
We measured the loading times (Table 6.1) of Angela’s dataset in three different
scenarios: (1) the dataset is loaded from remote services (using Google’s APIs,
except for the location history which is not provided by the API and was loaded
from a file), (2) the dataset is stored in local files, and (3) restarting the system
from a local backup file of the knowledge base. Numbers are given with and
without the loading of email message bodies and full-text search support. In
general, loading takes in the order of minutes. Restarting from a backup of the
knowledge base takes only seconds.

Stay extraction
The results of the performance evaluation of stay extraction were presented in
Chapter 4. We use the output of this enricher, i.e., a set of stays, for evaluating
the enricher that matches stays with events and possibly geocodes them using
the information from the stay.

Agent matching
We evaluated the precision and recall of AgentMatch, the algorithm for agent
matching described in Section 6.3, on Barack’s dataset. This dataset contains
40,483 Agent instances with a total of 25,381 schema:name values, of which 17,706
are distinct; it also contains 40,455 schema:email values, of which 24,650 are

6.4. Experiments 127

distinct. To compute the precision and recall, we sampled 2,000 pairs of distinct
Agents, and asked Barack to indicate which of the sampled pairs were equivalent
agent facets. Since pairs of non-equivalent instances considerably outnumber
pairs of equivalent instances, we performed stratified sampling by partitioning
the dataset based on the matches returned by AgentMatch for threshold values
between 0 and 1, in steps of 0.05. Figure 6.4 shows the distribution of Agent classes
by number of distinct emails within the class for classes output by AgentMatch.
The identifier-based matching baseline (further simply called IdMatch) is able
to reduce the number of distinct agents from 40,483 to 24,677 (61%), while
AgentMatch, for a threshold of 0.825, reduces it to 21,603 (53%).

We evaluated four different versions of AgentMatch. We tested both Lev-
enshtein and Jaro–Winkler for the f string similarity metric, as well as with
and without inverse document frequency weights. The word q-gram match ratio
threshold S was set to 0.6. For each version of AgentMatch, Table 6.2 presents
the value of the threshold λ for which the F1-measure is maximal. Precision
decreases while recall increases for decreasing threshold values (Figure 6.5).

For comparison, we also considered the Google Contacts’s “Find duplicates”
feature, and PARIS (Suchanek, Abiteboul, and Senellart 2011), an ontology
alignment algorithm that is parametrized by a single threshold. We also tested
Mac OS X’s contact deduplication feature, but while it was able to identify 29,408
distinct agents, the resulting merged contacts did not include all the metadata
from the original ones, which were needed to evaluate the matching.

Google was not able to handle more than 27,000 contacts at the same time,
and could not detect all duplicates at once, so we had to run it multiple times
in batches until convergence. However, we noticed that the final output was
dependent on the order in which contacts were input, and present two results:
one in which the contacts were supplied sorted by email address (Google1) and
another in which the contacts were supplied in a random order (Google2). Since
we noticed that Google’s algorithm failed to merge contacts that IdMatch had
merged, we also tested running IdMatch on Google’s output (GoogleId) for both
runs. For PARIS, we used the f string similarity metric for email addresses, and
used AgentMatch’s Ff similarity metric for names, except that it was applied to
single Agent instances instead of equivalent classes. PARIS computes the average
number of outgoing edges for each relation. Since our dataset contains duplicates,
we gave PARIS an advantage by computing these values upfront on the output
of AgentMatch. Finally, we also show the performance of the parameter-free
IdMatch baseline.

Our experiments (Table 6.2) show that the highest F1-measure is reached
for AgentMatch with Jaro–Winkler distance for a threshold of 0.825, for which
AgentMatch has a precision of 0.954, a recall of 0.945, and an F1-measure of 0.949.
It also out-performs PARIS by a large margin – for reasons that we discussed
in Section 6.3. GoogleId and IdMatch favor precision, reaching 0.997 and 1.000
respectively, with a recall of 0.625 and an F1-measure of 0.768 for GoogleId,
while IdMatch only has a recall of 0.430 and an F1-measure of 0.601. However,
by changing AgentMatch’s threshold, one can reach similar precision levels for
higher recalls. For instance, AgentMatch with the Jaro–Winkler distance and

128 Chapter 6. Personal knowledge integration

Algorithm Similarity IDF λ Prec. Rec. F1
AgentM. JaroWin. T 0.825 0.954 0.945 0.949
AgentM. Levensh. F 0.725 0.945 0.904 0.924
AgentM. Levensh. T 0.775 0.948 0.900 0.923
AgentM. JaroWin. F 0.925 0.988 0.841 0.909
PARIS JaroWin. T 0.425 0.829 0.922 0.873
GoogleId2 0.997 0.625 0.768
GoogleId1 0.996 0.608 0.755
Google1 0.995 0.508 0.672
Google2 0.996 0.453 0.623
IdMatch 1.000 0.430 0.601

Table 6.2: Precision and recall of AgentMatch, IdMatch, Google’s algorithms,
and PARIS on Barack’s dataset for varying parameters.

1 10
1

10

100

1,000

10,000

Class distinct email addresses

N
um

be
r
of

cl
as
se
s

IdMatch
AgentMatch

Figure 6.4: Distribution of Agent equivalence classes by number of distinct email
addresses for matchings generated on Barack’s dataset by IdMatch and the best
run of AgentMatch.

IDF weights has a precision of 0.992, a recall of 0.810 and a F1-measure of 0.892
for a threshold of 0.975.

Geolocating events
Matching stays with events We evaluated the matching of stays with calen-
dar events on Angela and Barack’s datasets. On Angela’s dataset, we considered

6.4. Experiments 129

0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 10.4

0.5

0.6

0.7

0.8

0.9

1

IdMatch

GoogleId

Precision

R
ec
al
l

AgentMatch
PARIS

Figure 6.5: Precision-recall curves of AgentMatch and PARIS on Barack’s dataset
for different thresholds. IdMatch and GoogleId are given as a reference. Precision
decreases while recall increases for decreasing thresholds.

a period of one year. This year consists of 129 events and 11,287 stays (as
detected by our system) with an average duration of 44 minutes. Candidate
matches, that is, the set of all stay-event matches outputted by the algorithm
whatever the chosen thresholds, were manually labeled by Angela. For Barack,
we ran the matching algorithm on the full dataset (4.5 years), and then we
asked Barack to label the candidate matches for 216 events picked uniformly at
random. Barack’s dataset consists of 3,667 events and 49,301 stays totaling 3,105
candidate matchings. The process of matching stays with calendar events relies
on two parameters, namely the overlap duration ratio threshold θ and the filtering
distance δ (cf. Section 6.3). Figure 6.6 shows how precision and recall vary
depending on θ for a filtering distance set to infinity. It shows some sensibility
to θ; the best results are obtained for a value of around 0.15. With θ set to 0.2,
Figure 6.7 shows the impact of the filtering distance δ. The performance slowly
increases with increasing values of δ. This indicates that filtering out stays that
are too far from the location defined by the event’s coordinates (where available)
should is not necessary and we have disabled this filter in the final version of
this matching implementation (or equivalently, set δ to infinity). In general, the
matching performs quite well: We achieve a precision and recall of around 70%.

Geocoding We experimented with the different geocoding enricher techniques
described in Section 6.3 on Barack’s dataset. On this dataset, we evaluated the
performance of geocoding event–stay matches on Barack’s dataset from three

130 Chapter 6. Personal knowledge integration

0.5 0.6 0.7 0.8 0.9
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

.1

.2

.3
.4

.5
.6

.8

.1

.2

.3
.4

.5
.6
.8

Precision

R
ec
al
l

Angela
Barack

Figure 6.6: Precision-recall curves of matching stays with events for different
values of the overlap duration ratio threshold θ and for a filtering distance δ set
to infinity.

0.7 0.72 0.74 0.76 0.78 0.8 0.82 0.84 0.86

0.55

0.6

0.65

0.7

0.75

1 m
10 m

100 m

1 km

10 km

>500 km

1 m
10 m

100 m

1 km
1000 km

>10 Mm

Precision

R
ec
al
l

Angela
Barack

Figure 6.7: Precision-recall curves of matching stays with events for different
values of the filtering distance δ and for an overlap duration ratio threshold θ set
to 0.2.

6.4. Experiments 131

Method M F T PT T|A PT|A F1
Event 26 63.6 4.0 5.4 10.0 13.6 22.9
EventSingle 50 40.8 4.0 7.9 9.6 19.0 27.7
Stay 0 69.6 0.8 0.8 30.4 30.4 46.6
StayEvent 50 16.4 27.2 54.4 33.6 67.2 57.3
StayEvent|Stay 0 50.0 28.4 28.4 50.0 50.0 66.7
GoogleTimeline 0 82.8 14.8 14.8 17.2 17.2 29.4

Table 6.3: Evaluation results for different geocoding techniques on 250 randomly
picked event–stay matches in Barack’s dataset (in %).

different inputs: (i). from the event’s textual location attribute (Event), (ii). from
the stay’s coordinates (Stay), (iii). from the event’s textual location attribute
using the geographic proximity to the stay as a bias (StayEvent). For this task,
we used Google Places and Maps Geocoding APIs. For each input, the geocoder
gave either no result (M), a false result (F), a true place (T), or just a true
address (A). For instance, an event occurring in “Hôtel Ritz Paris” is true if the
output is for instance “Ritz Paris”, while an output such as “15 Place Vendôme,
Paris” would be qualified as a true address. For comparison, we also evaluated
the place given by Barack’s own Google Timeline. Due to limitations of the
APIs, geocoding from stay coordinates mostly yielded address results (99.2%
of the time). To evaluate these methods better, we computed the number of
times in which the output was either a true place, or a true address (denoted
T|A). For those methods that did not always return a result, we computed a
precision metric PT|A (resp., PT), that is equal to the ratio of T|A (resp., T) to
the number of times a result was returned. We computed a F1-measure based on
the precision PT|A, and a recall assimilated to the number of times the geocoder
returned a result (1−M). The evaluation was performed on 250 randomly picked
event–stay matches, and the results are presented in Table 6.3. We notice that
geocoding using the StayEvent method yields the best precision (PT|A is equal
to 67.2%), but only returns a result 50.0% of the time. To cope with that, we
consider a fourth method, termed StayEvent|Stay, which returns the result given
by StayEvent if it exists and the result given by Stay otherwise. This fourth
method always returned a result, and gave the right place 28.4% of the time,
and the right place or address 50.0% of the time, which is our best result. This
is an OK result considering that around 45% of events’ textual locations were
room numbers without a mention of either a building or place name (i.e., C101).
For comparison, Google Timeline gave the right place or address 17.2% of the
time. To showcase the ambiguity present in an events’ textual locations, we also
evaluated the output of fifth method, EventSingle, that is equivalent to Event,
except that it keeps the most relevant result only if the geocoder returns a single
result.

132 Chapter 6. Personal knowledge integration

PREFIX schema: <http :// schema.org/>
PREFIX personal : <http://thymeflow.com/personal#>

SELECT ? attendeeTelephone
WHERE {

?event a schema:Event ;
schema:name "Alice ’s 25th Birthday Party" ;
schema: attendee / personal :sameAs*

/schema: telephone
/schema:name ? attendeeTelephone .

} GROUP BY ? attendeeTelephone

Figure 6.8: A query to retrieve the telephone numbers of the attendees of “Alice’s
25th Birthday Party” Facebook event.

6.5 Use cases
Finally, we illustrate the uses of a personal KB with some queries. Alice can ask
for instance the KB:

• What are the telephone numbers of her birthday party guests? (So she can
send them a last-minute message.)

• What are the places that she visited during her previous trip to London?
(So she does not go there a second time.)

• What are the latest emails sent by participants of the “Financial Restruc-
turing” working group? (So she quickly reviews them to be ready for this
afternoon’s meeting.)

Since the KB unites different information sources, queries seamlessly span
multiple sources and data types. For instance, the first question in the previous list
could ask for the telephone numbers of participants of a Facebook event. However,
for multiple different reasons, not all of Alice’s friends may have associated their
telephone numbers with their Facebook accounts, or Alice may not have access
to these numbers. Since she has also connected her personal address book to the
KB, she can exploit matches found by the system between her Facebook friends
and contacts in her personal address book whose telephone numbers are known.
For retrieving such matches, we use the personal:sameAs relation. The exact
query is shown in Figure 6.8.

The second question can be answered by retrieving all places ever visited by
Alice, and filter on an area around London. Alternatively, she can first retrieve
the event titled “London Summer 2015” from her calendar, and select the stays
whose time span intersects the event’s (see Figure 6.9 for the exact query). This
way, assuming instead that Alice had been to London several times in the past
and that she was trying to recall the location of this great pub she had been to

6.5. Use cases 133

PREFIX schema: <http :// schema.org/>
PREFIX personal : <http://thymeflow.com/personal#>

SELECT ? longitude ? latitude WHERE {
?event a schema:Event ;

schema:name "London Summer 2015" ;
schema: startDate ? eventStartDate ;
schema: endDate ? eventEndDate .

?stay a personal :Stay ;
schema:geo [

schema: longitude ? longitude ;
schema: latitude ? latitude

] ;
schema: startDate ? stayStartDate ;
schema: endDate ? stayEndDate .

FILTER(? stayStartDate <= ? eventEndDate &&
? stayEndDate >= ? eventStartDate)

}

Figure 6.9: A query to display on a map the places visited during London’s 2015
trip.

in the summer 2015, this time filter based on an event’s time span would instead
allow her to more easily find it.

For the third question, Alice uses the KB’s full-text search capabilities to find
the events whose name partially matches “Financial Restructuring”. Then, she
computes the set of the attendees of these meetings and finally outputs the most
recent 100 messages sent by any one of them, regardless of the address they used
(Figure 6.10).

Analytics Finally, Alice can also perform analytics such as:

• Who does she most frequently communicate with? (Taking into account
that some people have several email addresses.)

• What are the places where she usually meets one particular person (based
on her calendar)?

• What are the most used email providers used by my contacts?

• Who has sent her the most emails in this particular email folder?

To get an answer to the first question, we start by retrieving the set of all the
agents to which Alice sends email messages. Then, it suffices to group by each

134 Chapter 6. Personal knowledge integration

PREFIX schema: <http :// schema.org/>
PREFIX personal : <http://thymeflow.com/personal#>
PREFIX search: <http :// www. openrdf .org/ contrib /

lucenesail #>

SELECT ? messageHeadline WHERE {
?event a schema:Event ;

schema: attendee ? attendee ;
search: matches [

search:query " Financial Restructuring " ;
search: property schema:name

] .

? message a schema: Message ;
schema:sender/ personal :sameAs* ? attendee ;
schema: headline ? messageHeadline ;
schema: dateSent ? dateSent .

} ORDER BY DESC (? dateSent) LIMIT 100

Figure 6.10: A query to list the most recent 100 messages sent by a participant
of the “Financial Restructuring” meetings.

agent equivalence class, and count the number of email messages for each class.
To select equivalence classes, we use the special personal:PrimaryFacet RDFS
class, to which the representative for each equivalence class belongs. The members
of this class are computed by a special enricher that chooses a representative for
each equivalence class defined by the personal:sameAs relation. The query is
illustrated in Figure 6.11.

Analytics also provide better visualizations of Alice’s personal information.
For instance, she could use analytics to extend the contact visualization show in
Figure 6.3, by including for each contact a detailed summary of her interactions
with this person (e.g., events and places in common, communications). Another
way is to show these interactions on a graph visualization. For instance, Figure 6.12
shows a graph of the events and their attendees found in Alice’s KB.

User updates The user can use the KB to source synchronization facilities to
enrich her personal address book with knowledge inferred by the system. For
instance, she can add to each contact in her vCard address book the email
addresses found in other facets matched to this contact (see Figure 6.13 for an
example query).

6.5. Use cases 135

PREFIX schema: <http :// schema.org/>
PREFIX personal : <http://thymeflow.com/personal#>

SELECT (SAMPLE (? emailAddress) AS ? emailAddress)
(SAMPLE (? name) AS ?name)
? primaryAgent
(SUM (? count) as ?c)

{
? primaryAgent a personal : PrimaryFacet .
?agent personal :sameAs* ? primaryAgent .

{
SELECT ?agent (COUNT (? email) as ?count) WHERE

{
?email schema:sender ? userFacet ;

schema: recipient ?agent .
{

SELECT DISTINCT ? userFacet {
? userFacet personal :sameAs */ schema:

email <mailto: alice@thymeflow .com >
.

}
}

} GROUP BY ?agent
}

OPTIONAL {
? primaryAgent schema:email ? emailAddress ;

schema:name ?name .
}

} GROUP BY ? primaryAgent
ORDER BY DESC (? count)

Figure 6.11: A query to list the contacts to which Alice sends the most email
messages. For each contact, one email address and/or name is retrieved. The query
has been optimized. It takes into account in particular that the schema:email
relation may appear in multiple named graphs.

136 Chapter 6. Personal knowledge integration

Figure 6.12: A graph visualization of the events and their attendees in Al-
ice’s knowledge base. A blue node represents an agent, while an image or an
orange node represents an event. Agent nodes are connected to events via
schema:attendee edges. Alice can interact with a node to highlight its neighbors
or show its attributes (e.g., event’s name, agent’s telephone number).

6.6 Related work
The work presented in this chapter was motivated by the general concept of
personal information management, taking the viewpoint of Abiteboul, André,
and Kaplan (2015) as to what a PIMS should be. In Section 1.4, we gave some
notable examples of the current state of the art in PIMS. In this section, we
highlight the works to which ours is the most related.

Personal knowledge bases The problem of building a knowledge base for
querying and managing personal information is not new. Among the first projects
in this direction were IRIS (Cheyer, Park, and Giuli 2005), SEMEX (Dong and
A. Y. Halevy 2005), and NEPOMUK (Groza et al. 2007). These used Semantic
Web technologies to exchange data between different applications within a single
desktop computer. Some of them also provided semantic search facilities for
desktop information. However, these projects date from 2007 and before, and
much has changed since then. Today, most of our personal information is not
stored on an individual computer, but spread across several devices (Abiteboul,
André, and Kaplan 2015).

Our work is different from these projects in three aspects. (i) We do not

6.6. Related work 137

PREFIX schema: <http :// schema.org/>
PREFIX personal : <http://thymeflow.com/personal#>
INSERT {

GRAPH ? provenance {
?agent schema:email ?email

}
} WHERE {

GRAPH ? provenance {
?agent a personal :Agent .

}

? provenance a personal : ContactsSource ;
personal : account /schema:name

"alice. springs@gmail .com" .

?agent personal :sameAs +/ schema:email ?email .
FILTER NOT EXISTS {

?agent schema:email ?email .
}

}

Figure 6.13: A query that adds to each contact in Alice’s Google account the
email addresses found on matched agents.

tackle personal information management by reinventing the user experience
for reading/writing emails, managing a calendar, organizing files, etc. This is
the case for IRIS and NEPOMUK. (ii) We embrace personal information as
being fundamentally distributed and heterogeneous and we focus on the need
of providing knowledge integration on top for creating completely new services
(complex query answering, analytics). SEMEX is the only one to provide tight
integration, and we will discuss how our system differs from SEMEX in the next
paragraph. (iii) While NEPOMUK provides text analysis tools for extracting
entities from rich text and linking them with elements of the KB, our first focus is
on enriching existing semi-structured data, which improves the quality of available
data for use by other services.

Information Integration Entity resolution and information integration in
general is not a new problem (cf. Section 2.3). In the context of personal infor-
mation, SEMEX (Dong and A. Y. Halevy 2005) also integrates entity resolution
facilities. It imports information from documents, bibliography, contacts and
email, and uses attributes as well associations found between persons, institutions
and conferences to reconcile references. However, different from our work, they do
this integration at import time so Alice cannot later manually revoke it through
an update. Also, they do not handle incremental synchronization. Recently,

138 Chapter 6. Personal knowledge integration

contact managers from commercial vendors have started providing de-duplication
tools for finding duplicate contacts and merging them in bulk. However, these
tools restrict themselves to contacts present in Alice’s address book and do not
necessarily merge contacts from social networks or emails.

Combining the location history with the calendar Improvements in accu-
racy and battery efficiency of mobile location technologies have made possible the
estimation of Alice’s activities and visited places on a daily basis (cf. Section 2.3).
Most of these works have mainly exploited sensor data (acceleration, radio com-
munications, and location) and readily available geographic data. Few of them,
however, have exploited Alice’s calendar and other available data for creating
richer and more semantic activity histories. Recently, a study has recognized
the importance of using the location history and social network information for
improving the representation of information contained in Alice’s calendar: e.g.,
for distinguishing genuine real-world events from reminders (Lovett et al. 2010).

Ontology Common standards, such as vCards and iCalendar, have advanced
the state of the art by allowing provider-independent administration of personal
information. There is also a proposed standard for mapping vCard and iCalendar
content into RDF (Iannella and McKinney 2014; Miller and Connolly 2005). While
such standards are useful in our context, they do not provide the means to match
calendars, email messages, and events, as we do. The only set of vocabularies
besides schema.org that provides a broad coverage of all entities we are dealing
with is the OSCAF ontologies (Nepomuk Consortium and OSCAF 2007). But
their development was stopped in 2013 and they are not maintained anymore,
contrary to schema.org which is actively supported by companies like Google
and widely used on the web (R. V. Guha, Brickley, and Macbeth 2016). Recently,
a personal data service has been proposed that reuses the OSCAF ontologies, but
they use a relational database instead of a knowledge base (Sjöberg et al. 2016).

Email Analysis Several commercial applications and academics have taken to
analyzing the content of email. For example, they can recognize simple patterns
such as salutations, signatures, and dates (Carvalho and Cohen 2004). Apple
Mail and Gmail can find dates and suggest updates to the user’s calendar. Apple
Mail can also identify contact information and suggest an update to the user’s
address book (Apple 2016). Semantic data attached to email content in the form
of JSON-LD/Microdata annotations can provide information about flight, hotel,
train, bus, and restaurant reservations (Google 2016). Other services, such as
TripIt or Wipolo, can parse the content of emails to extract travel data and
construct a trip schedule. All of these approaches are orthogonal to our work:
they can provide enrichment modules in our system. Our work as a whole aims
to construct a coherent knowledge base on top of different sources of personal
information.

Commercial Solutions Some commercial providers, such as Google and Apple
ecosystems, have arguably come quite close to our vision of a personal knowledge

schema.org

6.7. Conclusion 139

base. They integrate calendars, emails, and address books, and allow smart
exchanges between them. Some of them even provide intelligent personal assistants
that pro-actively interact with Alice. However, these are closed-source and
promote vendor lock-in.

6.7 Conclusion

In this chapter, we presented and evaluated Thymeflow, a system that allows the
user to build her own personal knowledge base. Our system integrates information
from her email messages, calendars, address books, social network services, and
location history. It can identify agent entities and merge its different facets across
the different information sources, determine long stays in the location history, and
align them with calendars events. The user can use the system to visualize the
aggregated information that is associated with an agent, her timeline, or perform
more complex or analytical queries over her personal information. The system is
meant to remain under the direct control of the user and fully respect the privacy
of the user’s data. It is available under an open-source software license3, so that
people can freely use it, and researchers and developers can build on it.

Contributions We provide a fully functional and open-source personal knowl-
edge management system. In particular, we provide the following contributions:

1. The management of location histories in a personal KB and their integra-
tion with other types of personal information. As discussed previously,
location histories are increasingly being collected by various kinds of mobile
applications (cf. Section 3.5). While a location history is a great source
of knowledge by itself (Chapter 4, Chapter 5), we believe it only becomes
truly useful if it is semantically enriched with events and persons in the
user’s personal space – which is what we do.

2. The adaptation of ontology alignment techniques to the context of personal
KBs. The alignment of persons and organizations is rather standard. More
novel are the alignments based on text (a contact and a person mentioned
in a calendar entry), on time (a calendar event and a location), or on space
(the address of a contact and a place).

3. An architecture that allows the integration of heterogeneous personal in-
formation sources into a coherent whole. This includes a framework for
implementing knowledge enrichment algorithms and the design of incremen-
tal synchronization, where a change in a source triggers the loading and
treatment of just these changes in the central KB. Inversely, the user is able
to perform updates on the KB, which are persisted wherever possible in
the sources.

3https://github.com/thymeflow

https://github.com/thymeflow

140 Chapter 6. Personal knowledge integration

Future directions Our system can be extended in a number of directions,
including

• Incorporating more information: In particular, we want to include the user’s
web search history and her bank statements, as well as other services, e.g.,
TripAdvisor and Spotify.

• Extracting semantics from text: So far, we simply index text. We could,
for instance, find in the body of an email message the date and location of
a meeting that has been planned and perhaps the name of its participants
(listed or not as recipients of the message) (Carvalho and Cohen 2004;
Google 2016).

• Inferring more advanced knowledge: For instance, we could try to infer the
kind of affiliation or relationship (friend, colleague, or family) that the user
has with each of her acquaintances from the information that the system
has about them (communications, events, contact information, etc.).

• Exploiting this knowledge: As illustrated in Section 6.5, our system can be
used for querying. One could consider using it for more advanced personal
analytics and prediction.

• Improving the user interface: We would like to allow for a simpler query
language, maybe even natural language, to open our tool to non-technical
users. At the moment, our most user-friendly visualizations are the timeline
and contact components.

Conclusion

We have presented a novel system for personal information management. The
system builds a personal knowledge base from multiple heterogeneous sources of
personal information: email, calendars, address books, social network services, and
location history. Throughout our doctoral research, we designed, implemented,
and evaluated different algorithms for inferring knowledge from this data: stay
point extraction, transportation mode and route recognition, entity resolution,
spatiotemporal event-location alignment. With these algorithms, and with an
architecture that keeps the knowledge base continuously synchronized with the
sources, we showed how the user can use the knowledge base to answer new
questions.

Although the different enrichment algorithms could be further improved, they
provide a flavor of some of the problems that need to be solved in order to build
a coherent experience for the user, using readily available information.

Our work could be extended in different ways:

• Stay point extraction and transportation mode and route recognition should
perhaps work as a single coherent task. Rather than first identifying the
places that the user visited then deriving the transportation modes that she
used to go from one place to another, it may be better to perform a joint
derivation of a sequence of heterogeneous user “activities”, e.g., “having
dinner at a restaurant”, “taking the bus home”, and “walking to work”.

• The alignment procedure between events and stay points (or ideally “activ-
ities”) could be expanded to take event attributes other than the event’s
duration and location. In addition to the event’s description, its list of
attendees, its context (i.e., the previous and next events), related email
messages, as well as the history of previously confirmed event to stay point
alignments could be used to improve the alignment.

• Thymeflow could be expanded to incorporate more information, to infer
more knowledge. We think however that the focus should also be put in
stabilizing and improving its core features. For instance, to handle large
amounts of data, strategies should be designed to infer knowledge without
necessarily keeping a copy of the base data (e.g., pictures). Also, new
strategies should be designed for pushing knowledge to the sources. For
instance, we need to improve our understanding on how the pushing of
reconciled knowledge back to a source may cause a loss of information in
the source that could be useful in the future.

141

142 Conclusion

We would also like to raise the following issues which could drive future
research and development:

Gathering data for experiments Throughout our research, a consider-
able amount of effort was spent collecting, organizing, and annotating
personal information from willing participants, but also geographic and
public transportation information from online sources. In practice, it is
easy to collect much more than what may be needed, more than we can
use to evaluate our algorithms. There is a balance to be found between
putting effort into annotating and organizing already available data and
putting effort into collecting more complex or cleaner data. The research
community might benefit from building and maintaining sets of annotated
and multi-dimensional personal information for use in solving different kinds
of tasks and evaluating the solutions.

Opportunities Many Internet companies that already hold a lot of user
data are not yet integrating everything they have about each user into a
coherent whole, and are not performing as well as we think they could. For
instance, Google Location History does not integrate the user’s calendar,
unlike we do. We think that there are still many opportunities to create
new products and functionalities from existing personal information alone.

Inaccessible information The hard truth is that many popular Internet-
based services still do not provide APIs for conveniently retrieving user
data out of them (e.g., WhatsApp), or provide APIs that do not allow the
retrieval of all user data (e.g., Facebook). For this reason, solutions for
automatically extracting user data and other relevant personal information
no matter the available interface could definitely be useful. While Web
crawlers are useful for obtaining information from online Web services, a
more suitable alternative for obtaining relevant personal information may
be to systematically intercept the Web content that the user sees when
using these services, in the style of lifelogging but where the focus is on
extracting relevant structured data and where the relevance of an item
could be inferred from the user interactions (e.g., mouse clicks, text input)
and preexisting knowledge. Admittedly, such an alternative generalizes to
services without a Web interface assuming that a content interceptor can
exist between the service’s interface and the user (e.g., a screenshot of a
mobile application).

In 2016, Gartner introduced personal analytics into its “hype cycle” for
emerging technologies (Gartner 2016). This represents a strong belief by the
firm that this fairly young technology shows promise to deliver a high degree of
competitive advantage over the next years. We believe so too, and think that with
the increasing diversification and popularity of quantified-self wearables and the
development of context-aware applications such as intelligent personal assistants,
the sources needed and the need to derive the emotions, activities, schedules, well-
being, and mobility patterns of an individual will keep augmenting. Recognizing
habits, tastes, patterns, and motives in different aspects of a individual’s life such

143

as work time, leisure, health, personal finance, and consumption has long been in
the agenda of marketers, advertisers, credit bureaus, and health corporations.

However, this need is still greatly driven by corporations that are looking
to create value from this data, especially when the understanding comes from
aggregating data from a large group of individuals. Individuals themselves have
not yet embraced this power, as they are still struggling to take control over their
personal information, concerned by their own privacy yet still making use of many
services to which they give a lot of information away, for the convenience they
provide.

While our vision of a PIMS does seem to be a solid foundation for personal
analytics, the difficulty is finding the precise leverage to attract and deploy it to
consumers. New functionalities are indeed attractive, but are only a necessary
condition. An important issue is the business model that, in our opinion, should
stay away from standard models for Web services based on monetizing the user’s
attention or data. Another issue is which companies would be involved in the
ecosystem of such a product. Such a PIMS should interest traditional companies
that feel increasingly disintermediated by pure Internet players and startups that
want to quickly develop novel products that could leverage cleaner, richer, and/or
synthesized information from the user. These issues may suggest expansions of
the Thymeflow model that we intend to investigate in the future.

Self-references

Montoya, D. and S. Abiteboul (2014). “Inférence d’itinéraires multimodaux à par-
tir de données smartphone”. In: Gestion de Données — Principes, Technologies
et Applications. Actes de la 30ème Conférence. Ed. by D. Gross-Amblard,
C. Collet, C. Bobineau, and F. Jouanot. BDA ’14. Autrans, France, pp. 38–42.
url: https://montoya.one/fr/publication/hupme-bda-2014/.

Montoya, D., S. Abiteboul, and P. Senellart (2015). “Hup-Me: Inferring and
Reconciling a Timeline of User Activity with Smartphone and Personal Data”.
In: Advances in Geographic Information Systems. Proceedings of the 23rd
SIGSPATIAL International Conference. Ed. by M. Ali, H. Yan, M. Gertz,
M. Renz, and J. Sankaranarayanan. SIGSPATIAL ’15. Seattle, Washington,
USA, 62:1–4. doi: 10.1145/2820783.2820852.

Montoya, D., T. Pellissier Tanon, S. Abiteboul, and F. Suchanek (2016).
“Thymeflow, A Personal Knowledge Base with Spatio-temporal Data”. In:
Information and Knowledge Management. Proceedings of the 25th ACM Inter-
national Conference. CIKM ’16. Indianapolis, Indiana, USA: ACM, pp. 2477–
2480. doi: 10.1145/2983323.2983337.

145

https://montoya.one/fr/publication/hupme-bda-2014/
https://doi.org/10.1145/2820783.2820852
https://doi.org/10.1145/2983323.2983337

Other references

93rd United States Congress (1974). Privacy Act of 1974. Public Law 93–579.
url: http://legislink.org/us/pl-93-579.

Abadi, M., A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado,
A. Davis, J. Dean, M. Devin, S. Ghemawat, I. J. Goodfellow, A. Harp, G.
Irving, M. Isard, Y. Jia, R. Józefowicz, L. Kaiser, M. Kudlur, J. Levenberg,
D. Mané, R. Monga, S. Moore, D. G. Murray, C. Olah, M. Schuster, J. Shlens,
B. Steiner, I. Sutskever, K. Talwar, P. A. Tucker, V. Vanhoucke, V. Vasudevan,
F. B. Viégas, O. Vinyals, P. Warden, M. Wattenberg, M. Wicke, Y. Yu, and X.
Zheng (2016). TensorFlow: Large-Scale Machine Learning on Heterogeneous
Distributed Systems. arXiv: 1603.04467 [abs].

Abiteboul, S., B. André, and D. Kaplan (2015). “Managing Your Digital Life”.
In: Communications of the ACM 58.5, pp. 32–35. doi: 10.1145/2670528.

Abiteboul, S., I. Manolescu, P. Rigaux, M.-C. Rousset, and P. Senellart (2011).
Web Data Management. Cambridge University Press.

Adams, B., D. Phung, and S. Venkatesh (2006). “Extraction of Social Context and
Application to Personal Multimedia Exploration”. In: Multimedia. Proceedings
of the 14th ACM International Conference. MM ’06. Santa Barbara, CA, USA:
ACM, pp. 987–996. doi: 10.1145/1180639.1180857.

Andor, D., C. Alberti, D. Weiss, A. Severyn, A. Presta, K. Ganchev, S. Petrov, and
M. Collins (2016). “Globally Normalized Transition-Based Neural Networks”.
In: Association for Computational Linguistics. Proceedings of the 54th Annual
Meeting. ACL ’16. Berlin, Germany. url: http://aclweb.org/anthology/
P/P16/P16-1231.pdf.

Android Developers Guide (2013). Recognizing the User’s Current Activity.
url: http://developer.android.com/training/location/activity-
recognition.html (visited on 05/16/2014).

Apple (2016). Mail: Add events, contacts, and more from messages. url: https:
//support.apple.com/kb/PH22304 (visited on 04/18/2016).

Apple Inc. (2017a). CLLocationManager – Core Location. url: https : / /
developer . apple . com / reference / corelocation / cllocationmanager
(visited on 01/30/2017).

147

http://legislink.org/us/pl-93-579
http://arxiv.org/abs/1603.04467
https://doi.org/10.1145/2670528
https://doi.org/10.1145/1180639.1180857
http://aclweb.org/anthology/P/P16/P16-1231.pdf
http://aclweb.org/anthology/P/P16/P16-1231.pdf
http://developer.android.com/training/location/activity-recognition.html
http://developer.android.com/training/location/activity-recognition.html
https://support.apple.com/kb/PH22304
https://support.apple.com/kb/PH22304
https://developer.apple.com/reference/corelocation/cllocationmanager
https://developer.apple.com/reference/corelocation/cllocationmanager

148 Other references

Apple Inc (2013). CMMotionActivity. url: https : / / developer . apple .
com / library / ios / documentation / CoreMotion / Reference /
CMMotionActivity_class/ (visited on 05/16/2014).

Apple Inc. (2017b). iOS 10 for Developers – Apple Developer. url: https :
//developer.apple.com/ios/ (visited on 01/30/2017).

Argote, L. and P. Ingram (2000). “Knowledge transfer: A basis for competitive
advantage in firms”. In: Organizational behavior and human decision processes
82.1, pp. 150–169. doi: 10.1006/obhd.2000.2893.

A.R.O., Inc. (2011). SAGA: Choose your own adventure. url: http://www.
getsaga.com/ (visited on 01/05/2017).

Ashbrook, D. and T. Starner (2003a). “Using GPS to learn significant locations
and predict movement across multiple users”. In: Personal and Ubiquitous
Computing 7.5, pp. 275–286. doi: 10.1007/s00779-003-0240-0.

— (2003b). “Using GPS to learn significant locations and predict movement
across multiple users”. English. In: Personal and Ubiquitous Computing 7.5,
pp. 275–286. doi: 10.1007/s00779-003-0240-0.

Atkinson, R. C. and R. M. Shiffrin (1968). “Human Memory: A Proposed System
and its Control Processes”. In: Psychology of Learning and Motivation 2.
Ed. by K. W. Spence and J. T. Spence, pp. 89–195. doi: 10.1016/S0079-
7421(08)60422-3.

Bakir, G. H., T. Hofmann, B. Schölkopf, A. J. Smola, B. Taskar, and S. V. N.
Vishwanathan (2007). Predicting Structured Dataa. MIT press.

Bao, L. and S. S. Intille (2004). “Activity Recognition from User-Annotated
Acceleration Data”. In: Pervasive Computing. Proceedings of the Second In-
ternational Conference, PERVASIVE 2004. Ed. by A. Ferscha and F. Mattern.
Vol. 3001. Lecture Notes In Computer Science. Berlin, Heidelberg: Springer,
pp. 1–17. doi: 10.1007/978-3-540-24646-6_1.

Barnes, S. B. (2006). “A privacy paradox: Social networking in the United States”.
In: First Monday. doi: 10.5210/fm.v11i9.1394.

Barthélemy, M. (2011). “Spatial networks”. In: Physics Reports 499.1–3, pp. 1–101.
doi: 10.1016/j.physrep.2010.11.002.

Bell, G. and J. Gemmell (2009). Total Recall. How the E-memory Revolution
Will Change Everything. Dutton.

Berners-Lee, T. (2006). Linked Data – Design issues. url: http://www.w3.org/
DesignIssues/LinkedData.html (visited on 01/14/2017).

Berners-Lee, T., J. Hendler, and O. Lassila (2001). “The Semantic Web”. In: Scien-
tific American. url: https://www.scientificamerican.com/article/the-
semantic-web/.

https://developer.apple.com/library/ios/documentation/CoreMotion/Reference/CMMotionActivity_class/
https://developer.apple.com/library/ios/documentation/CoreMotion/Reference/CMMotionActivity_class/
https://developer.apple.com/library/ios/documentation/CoreMotion/Reference/CMMotionActivity_class/
https://developer.apple.com/ios/
https://developer.apple.com/ios/
https://doi.org/10.1006/obhd.2000.2893
http://www.getsaga.com/
http://www.getsaga.com/
https://doi.org/10.1007/s00779-003-0240-0
https://doi.org/10.1007/s00779-003-0240-0
https://doi.org/10.1016/S0079-7421(08)60422-3
https://doi.org/10.1016/S0079-7421(08)60422-3
https://doi.org/10.1007/978-3-540-24646-6_1
https://doi.org/10.5210/fm.v11i9.1394
https://doi.org/10.1016/j.physrep.2010.11.002
http://www.w3.org/DesignIssues/LinkedData.html
http://www.w3.org/DesignIssues/LinkedData.html
https://www.scientificamerican.com/article/the-semantic-web/
https://www.scientificamerican.com/article/the-semantic-web/

Other references 149

Bernstein, M., M. Van Kleek, D. Karger, and M. C. Schraefel (2008). “Informa-
tion Scraps: How and Why Information Eludes Our Personal Information
Management Tools”. In: ACM Transactions on Information Systems 26.4,
24:1–24:46. doi: 10.1145/1402256.1402263.

Biagioni, J., T. Gerlich, T. Merrifield, and J. Eriksson (2011). “EasyTracker:
Automatic Transit Tracking, Mapping, and Arrival Time Prediction Using
Smartphones”. In: Proceedings of the 9th ACM Conference on Embedded
Networked Sensor Systems. SenSys ’11. (Seattle, Washington). New York, NY,
USA: ACM, pp. 68–81. doi: 10.1145/2070942.2070950.

Biron, P. V. and A. Malhotra (2004). XML Schema Part 2: Datatypes Second
Edition. W3C Recommendation. W3C. url: https://www.w3.org/TR/
xmlschema-2/.

Bizer, C., T. Heath, and T. Berners-Lee (2009). “Linked data — the story so
far”. In: International Journal on Semantic Web and Information Systems
5.3, pp. 1–22. doi: 10.4018/jswis.2009081901.

Bizer, C., R. Meusel, and A. Primpeli (2016). Web Data Commons —- RDFa,
Microdata, and Microformat Data Set. url: http://webdatacommons.org/
structureddata/ (visited on 12/28/2016).

Blunschi, L., J. Dittrich, O. R. Girard, S. K. Karakashian, and M. A. V. Salles
(2007). “A Dataspace Odyssey: The iMeMex Personal Dataspace Management
System”. In: Innovative Data Systems Research. Third Biennial Conference.
CIDR 2007. Asilomar, California, USA, pp. 114–119. url: http://cidrdb.
org/cidr2007/papers/cidr07p13.pdf.

Bohn, R. E. and J. E. Short (2009). How Much Information? 2009 Report
on American Consumers. Tech. rep. Global Information Industry Center,
University of California, San Diego.

Bolger, N., A. Davis, and E. Rafaeli (2003). “Diary methods: Capturing life as it
is lived”. In: Annual Review of Psychology 54, pp. 579–616. doi: 10.1146/
annurev.psych.54.101601.145030.

Bostock, M. (2017). D3.js – Data-Driven Documents. url: https://d3js.org/
(visited on 01/30/2017).

Brickley, D. and R. Guha (2014). RDF Schema 1.1. W3C Recommendation. W3C.
url: http://www.w3.org/TR/2014/REC-rdf-schema-20140225/.

Brickley, D. and L. Miller (2014). FOAF Vocabulary Specification 0.99. url:
http://xmlns.com/foaf/spec/20140114.html (visited on 12/28/2016).

Broekstra, J., A. Kampman, and F. van Harmelen (2002). “Sesame: A Generic
Architecture for Storing and Querying RDF and RDF Schema”. In: The
Semantic Web — ISWC 2002. Proceedings of the First International Semantic
Web Conference. Ed. by I. Horrocks and J. Hendler. Vol. 2342. Lecture

https://doi.org/10.1145/1402256.1402263
https://doi.org/10.1145/2070942.2070950
https://www.w3.org/TR/xmlschema-2/
https://www.w3.org/TR/xmlschema-2/
https://doi.org/10.4018/jswis.2009081901
http://webdatacommons.org/structureddata/
http://webdatacommons.org/structureddata/
http://cidrdb.org/cidr2007/papers/cidr07p13.pdf
http://cidrdb.org/cidr2007/papers/cidr07p13.pdf
https://doi.org/10.1146/annurev.psych.54.101601.145030
https://doi.org/10.1146/annurev.psych.54.101601.145030
https://d3js.org/
http://www.w3.org/TR/2014/REC-rdf-schema-20140225/
http://xmlns.com/foaf/spec/20140114.html

150 Other references

Notes in Computer Science. Berlin, Heidelberg: Springer, pp. 54–68. doi:
10.1007/3-540-48005-6_7.

Buckle, C. (2016). Digital consumers own 3.64 connected devices. Global Web
Index. url: https://www.globalwebindex.net/blog/digital-consumers-
own-3.64-connected-devices (visited on 01/12/2017).

Bui, H. H., S. Venkatesh, and G. West (2002). “Policy Recognition in the Abstract
Hidden Markov Model”. In: Journal of Artificial Intelligence Research 17,
pp. 451–499. doi: 10.1613/jair.839.

Bush, V. (1945). “As We May Think”. In: The Atlantic Monthly 176.1, pp. 101–108.
url: https://www.theatlantic.com/magazine/archive/1945/07/as-we-
may-think/303881/.

Byrd, A. and L. Grégoire (2016). OpenTripPlanner v1.0.0. url: http : / /
opentripplanner.org (visited on 01/10/2017).

Carothers, G. and A. Seaborne (2014). RDF 1.1 TriG. W3C Recommendation.
W3C. url: http://www.w3.org/TR/2014/REC-trig-20140225/.

Carroll, J. and G. Klyne (2004). Resource Description Framework (RDF): Con-
cepts and Abstract Syntax. W3C Recommendation. W3C. url: http://www.
w3.org/TR/2004/REC-rdf-concepts-20040210/.

Carvalho, V. R. de and W. W. Cohen (2004). “Learning to Extract Signature
and Reply Lines from Email”. In: Email and Anti-Spam. Proceedings of
the First Conference. CEAS 2004. Mountain View, California, USA. url:
http://www.ceas.cc/papers-2004/135.pdf.

Chen, J. and M. Bierlaire (2015). “Probabilistic Multimodal Map Matching
With Rich Smartphone Data”. In: Journal of Intelligent Transportation Sys-
tems: Technology, Planning and Operations 19.2, pp. 134–148. doi: 10.1080/
15472450.2013.764796.

Chen, L., C. D. Nugent, J. Biswas, and J. Hoey (2011). Activity Recognition in
Pervasive Intelligent Environments. Vol. 4. Atlantis Ambient and Pervasive
Intelligence. Atlantis Press. doi: 10.2991/978-94-91216-05-3.

Cheyer, A., J. Park, and R. Giuli (2005). IRIS: Integrate. Relate. Infer. Share.
Tech. rep. Aachen, Germany, pp. 64–78. url: http://ceur-ws.org/Vol-
175/17_park_iris_final.pdf.

Choudhury, T., G. Borriello, S. Consolvo, D. Haehnel, B. Harrison, B. Hemingway,
J. Hightower, P. " Klasnja, K. Koscher, A. LaMarca, J. A. Landay, L. LeGrand,
J. Lester, A. Rahimi, A. Rea, and D. Wyatt (2008). “The Mobile Sensing
Platform: An Embedded Activity Recognition System”. In: IEEE Pervasive
Computing 7.2, pp. 32–41. doi: 10.1109/MPRV.2008.39.

Christen, P. (2012). Data matching. Concepts and Techniques for Record Linkage,
Entity Resolution, and Duplicate Detection. Springer. doi: 10.1007/978-3-
642-31164-2.

https://doi.org/10.1007/3-540-48005-6_7
https://www.globalwebindex.net/blog/digital-consumers-own-3.64-connected-devices
https://www.globalwebindex.net/blog/digital-consumers-own-3.64-connected-devices
https://doi.org/10.1613/jair.839
https://www.theatlantic.com/magazine/archive/1945/07/as-we-may-think/303881/
https://www.theatlantic.com/magazine/archive/1945/07/as-we-may-think/303881/
http://opentripplanner.org
http://opentripplanner.org
http://www.w3.org/TR/2014/REC-trig-20140225/
http://www.w3.org/TR/2004/REC-rdf-concepts-20040210/
http://www.w3.org/TR/2004/REC-rdf-concepts-20040210/
http://www.ceas.cc/papers-2004/135.pdf
https://doi.org/10.1080/15472450.2013.764796
https://doi.org/10.1080/15472450.2013.764796
https://doi.org/10.2991/978-94-91216-05-3
http://ceur-ws.org/Vol-175/17_park_iris_final.pdf
http://ceur-ws.org/Vol-175/17_park_iris_final.pdf
https://doi.org/10.1109/MPRV.2008.39
https://doi.org/10.1007/978-3-642-31164-2
https://doi.org/10.1007/978-3-642-31164-2

Other references 151

Constine, J. (2015). Facebook Is Shutting Down Its API For Giving Your Friends’
Data To Apps. url: https://techcrunch.com/2015/04/28/facebook-api-
shut-down/ (visited on 12/28/2016).

Cooper, B. B. and J. Sharp (2017). Exist – Understand your behaviour. url:
https://exist.io/ (visited on 01/30/2017).

Cowie, J. and W. Lehnert (1996). “Information Extraction”. In: Communications
of the ACM 39.1, pp. 80–91. doi: 10.1145/234173.234209.

Cozy Cloud (2016). Cozy — Simple, versatile, yours. url: https://cozy.io/
(visited on 01/15/2017).

Crispin, M. (2003). Internet Message Access protocol - version 4rev1. RFC 3501.
IETF. url: https://tools.ietf.org/html/rfc3501.

Daboo, C. (2011). CardDAV: vCard Extensions to Web Distributed Authoring
and Versioning (WebDAV). RFC 6352. IETF. url: https://tools.ietf.
org/html/rfc6352.

Daboo, C., B. Desruisseaux, and L. Dusseault (2007). Calendaring Extensions
to WebDAV (CalDAV). RFC 4791. IETF. url: https://tools.ietf.org/
html/rfc4791.

Daboo, C. (2009). iCalendar Transport-Independent Interoperability Protocol
(iTIP). RFC 5546. IETF. url: https://tools.ietf.org/html/rfc5546.

Daigle, L. (2004). WHOIS Protocol Specification. RFC 3912. IETF. url: https:
//tools.ietf.org/html/rfc3912.

Desruisseaux, B. (2009). Internet Calendaring and Scheduling Core Object Specifi-
cation (iCalendar). RFC 5545. IETF. url: https://tools.ietf.org/html/
rfc5545.

Dienlin, T. and S. Trepte (2015). “Is the privacy paradox a relic of the past? An
in-depth analysis of privacy attitudes and privacy behaviors”. In: European
Journal of Social Psychology 45.3, pp. 285–297. doi: 10.1002/ejsp.2049.

Dittrich, J. and M. A. V. Salles (2006). “iDM: A Unified and Versatile Data
Model for Personal Dataspace Management”. In: Very Large Data Bases.
Proceedings of the 32nd International Conference. VLDB ’06. Seoul, Korea:
VLDB Endowment, pp. 367–378. url: http://dl.acm.org/citation.cfm?
id=1182635.1164160.

Doherty, A. R., N. Caprani, C. Ó. Conaire, V. Kalnikaite, C. Gurrin, A. F.
Smeaton, and N. E. O’Connor (2011). “Passively recognising human activities
through lifelogging”. In: Computers in Human Behavior 27.5, pp. 1948–1958.
doi: 10.1016/j.chb.2011.05.002.

Doherty, A. R., C. J. A. Moulin, and A. F. Smeaton (2011). “Automatically
assisting human memory: A SenseCam browser”. In: Memory 19.7, pp. 785–
795. doi: 10.1080/09658211.2010.509732.

https://techcrunch.com/2015/04/28/facebook-api-shut-down/
https://techcrunch.com/2015/04/28/facebook-api-shut-down/
https://exist.io/
https://doi.org/10.1145/234173.234209
https://cozy.io/
https://tools.ietf.org/html/rfc3501
https://tools.ietf.org/html/rfc6352
https://tools.ietf.org/html/rfc6352
https://tools.ietf.org/html/rfc4791
https://tools.ietf.org/html/rfc4791
https://tools.ietf.org/html/rfc5546
https://tools.ietf.org/html/rfc3912
https://tools.ietf.org/html/rfc3912
https://tools.ietf.org/html/rfc5545
https://tools.ietf.org/html/rfc5545
https://doi.org/10.1002/ejsp.2049
http://dl.acm.org/citation.cfm?id=1182635.1164160
http://dl.acm.org/citation.cfm?id=1182635.1164160
https://doi.org/10.1016/j.chb.2011.05.002
https://doi.org/10.1080/09658211.2010.509732

152 Other references

Dong, X. and A. Y. Halevy (2005). “A Platform for Personal Information Man-
agement and Integration”. In: Innovative Data Systems Research. Second
Biennial Conference. CIDR 2005. Asilomar, CA, USA, pp. 119–130. url:
http://cidrdb.org/cidr2005/papers/P10.pdf.

Drago, I., M. Mellia, M. M. Munafo, A. Sperotto, R. Sadre, and A. Pras (2012).
“Inside Dropbox: Understanding Personal Cloud Storage Services”. In: In-
ternet Measurement Conference. Proceedings of the 2012. IMC ’12. Boston,
Massachusetts, USA: ACM, pp. 481–494. doi: 10.1145/2398776.2398827.

Dumais, S. T., E. Cutrell, J. J. Cadiz, G. Jancke, R. Sarin, and D. C. Robbins
(2003). “Stuff I’ve Seen: A System for Personal Information Retrieval and
Re-use”. In: Research and Development in Information Retrieval. Proceedings
of the 26th Annual International ACM SIGIR Conference. SIGIR ’03. Toronto,
Canada: ACM, pp. 72–79. doi: 10.1145/860435.860451.

Dusseault, L. (2007). HTTP Extensions for Web Distributed Authoring and
Versioning (WebDAV). RFC 4918. IETF. url: https://tools.ietf.org/
html/rfc4918.

Eclipse Foundation (2017). Eclipse RDF4J – a Java framework for RDF. url:
http://rdf4j.org/ (visited on 01/30/2017).

École Polytechnique Fédérale de Lausanne (2017). The Scala Programming Lan-
guage. url: https://www.scala-lang.org/ (visited on 01/30/2017).

European Parliament and Council (2016). “Article 17. Right to erasure (‘right to
be forgotten’)”. In: Regulation (EU) 2016/679 of the European Parliament
and of the Council of 27 April 2016 on the protection of natural persons with
regard to the processing of personal data and on the free movement of such
data, and repealing Directive 95/46/EC (General Data Protection Regulation)
(Text with EEA relevance), pp. 43–44. url: http://data.europa.eu/eli/
reg/2016/679/oj.

— (1995). “Directive 95/46/EC of the European Parliament and of the Council of
24 October 1995 on the protection of individuals with regard to the processing
of personal data and on the free movement of such data”. In: Official Journal
of the European Communities L 281, pp. 31–50. url: http://data.europa.
eu/eli/dir/1995/46/oj.

Euzenat, J. and P. Shvaiko (2013). Ontology Matching. 2nd ed. Berlin, Heidelberg:
Springer. doi: 10.1007/978-3-642-38721-0.

Facebook (2017). Changelog – Graph API. url: https://developers.facebook.
com/docs/apps/changelog (visited on 01/30/2017).

— (2016a). Company Info — Stats. url: https://web.archive.org/web/
20161228131003/http://newsroom.fb.com/company-info/ (visited on
12/28/2016).

http://cidrdb.org/cidr2005/papers/P10.pdf
https://doi.org/10.1145/2398776.2398827
https://doi.org/10.1145/860435.860451
https://tools.ietf.org/html/rfc4918
https://tools.ietf.org/html/rfc4918
http://rdf4j.org/
https://www.scala-lang.org/
http://data.europa.eu/eli/reg/2016/679/oj
http://data.europa.eu/eli/reg/2016/679/oj
http://data.europa.eu/eli/dir/1995/46/oj
http://data.europa.eu/eli/dir/1995/46/oj
https://doi.org/10.1007/978-3-642-38721-0
https://developers.facebook.com/docs/apps/changelog
https://developers.facebook.com/docs/apps/changelog
https://web.archive.org/web/20161228131003/http://newsroom.fb.com/company-info/
https://web.archive.org/web/20161228131003/http://newsroom.fb.com/company-info/

Other references 153

— (2016[b]). The Graph API. url: https://developers.facebook.com/docs/
graph-api/ (visited on 09/01/2016).

Fisher, D., A. J. Brush, E. Gleave, and M. A. Smith (2006). “Revisiting Whittaker
& Sidner’s "Email Overload" Ten Years Later”. In: Computer Supported
Cooperative Work. Proceedings of the 2006 20th Anniversary Conference.
CSCW ’06. Banff, Alberta, Canada: ACM, pp. 309–312. doi: 10.1145/
1180875.1180922.

Flint, L. N. (1917). Newspaper writing in high schools. Containing an outline
for the use of teachers. Lloyd Adams Noble. url: https://archive.org/
details/newspaperwriting00flinrich.

Franklin, M., A. Halevy, and D. Maier (2005). “From Databases to Dataspaces:
A New Abstraction for Information Management”. In: SIGMOD Record 34.4,
pp. 27–33. doi: 10.1145/1107499.1107502.

Fraser, N. (2009). “Differential Synchronization”. In: Document Engineering.
Proceedings of the 9th ACM Symposium. DocEng ’09. Munich, Germany:
ACM, pp. 13–20. doi: 10.1145/1600193.1600198.

Freeman, E. T. (1997). “The Lifestreams Software Architecture”. PhD thesis.
Yale University.

Freeman, E. and D. Gelernter (1996). “Lifestreams: A Storage Model for Personal
Data”. In: SIGMOD Record 25.1, pp. 80–86. doi: 10.1145/381854.381893.

Garcia-Molina, H., Y. Papakonstantinou, D. Quass, A. Rajaraman, Y. Sagiv,
J. Ullman, V. Vassalos, and J. Widom (1997). “The TSIMMIS Approach to
Mediation: Data Models and Languages”. In: Journal of Intelligent Information
Systems 8.2, pp. 117–132. doi: 10.1023/A:1008683107812.

Gartner (2015). Gartner Says 6.4 Billion Connected “Things” Will Be in Use in
2016, Up 30 Percent From 2015. url: http://www.gartner.com/newsroom/
id/3165317 (visited on 12/28/2016).

— (2016). Gartner’s 2016 Hype Cycle for Emerging Technologies Identifies Three
Key Trends That Organizations Must Track to Gain Competitive Advan-
tage. url: http://www.gartner.com/newsroom/id/3412017 (visited on
01/18/2017).

Gellman, B. and L. Poitras (2013). “U.S., British intelligence mining data from
nine US Internet companies in broad secret program”. In: The Washington
Post.

Gemalto (2016). It’s All About Identity Theft. First half findings from the 2016
Breach Level Index. url: http://breachlevelindex.com/assets/Breach-
Level-Index-Report-H12016.pdf (visited on 01/13/2017).

Gemmell, J., G. Bell, and R. Lueder (2006). “MyLifeBits: A Personal Database
for Everything”. In: Communications of the ACM 49.1, pp. 88–95. doi: 10.
1145/1107458.1107460.

https://developers.facebook.com/docs/graph-api/
https://developers.facebook.com/docs/graph-api/
https://doi.org/10.1145/1180875.1180922
https://doi.org/10.1145/1180875.1180922
https://archive.org/details/newspaperwriting00flinrich
https://archive.org/details/newspaperwriting00flinrich
https://doi.org/10.1145/1107499.1107502
https://doi.org/10.1145/1600193.1600198
https://doi.org/10.1145/381854.381893
https://doi.org/10.1023/A:1008683107812
http://www.gartner.com/newsroom/id/3165317
http://www.gartner.com/newsroom/id/3165317
http://www.gartner.com/newsroom/id/3412017
http://breachlevelindex.com/assets/Breach-Level-Index-Report-H12016.pdf
http://breachlevelindex.com/assets/Breach-Level-Index-Report-H12016.pdf
https://doi.org/10.1145/1107458.1107460
https://doi.org/10.1145/1107458.1107460

154 Other references

Gemmell, J., G. Bell, R. Lueder, S. Drucker, and C. Wong (2002). “MyLifeBits:
Fulfilling the Memex Vision”. In: Multimedia. Proceedings of the Tenth ACM
International Conference. MULTIMEDIA ’02. Juan-les-Pins, France: ACM,
pp. 235–238. doi: 10.1145/641007.641053.

GeoTelematic Solutions, Inc. (2017). GPS Tracking: Open-Source GPS Track-
ing System – OpenGTS. url: http : / / www . opengts . org/ (visited on
01/30/2017).

Goodfellow, I., Y. Bengio, and A. Courville (2016a). “Deep Feedforward Networks”.
In: Deep Learning. MIT Press. Chap. 6, pp. 168–227. url: http://www.
deeplearningbook.org/contents/mlp.html.

— (2016b). “Sequence Modeling: Recurrentand Recursive Nets”. In: Deep Learn-
ing. MIT Press. Chap. 10, pp. 373–420. url: http://www.deeplearningbook.
org/contents/rnn.html.

Google (2017a). Android. url: https : / / www . android . com/ (visited on
01/30/2017).

— (2016). Email Markup. url: https://developers.google.com/gmail/
markup/ (visited on 04/18/2016).

— (2015a). General Transit Feed Specification Reference. url: https : / /
developers . google . com / transit / gtfs / reference (visited on
03/23/2015).

— (2017b). Google Maps APIs. url: https://developers.google.com/maps/
documentation (visited on 01/30/2017).

— (2015b). Google Timeline and Location History. url: https://www.google.
fr/maps/timeline (visited on 09/11/2016).

— (2017c). LocationRequest – Google APIs for Android. url: https : / /
developers . google . com / android / reference / com / google / android /
gms/location/LocationRequest (visited on 01/30/2017).

Graves, A., M. Liwicki, S. Fernández, R. Bertolami, H. Bunke, and J. Schmidhuber
(2009). “A Novel Connectionist System for Unconstrained Handwriting Recog-
nition”. In: IEEE Transactions on Pattern Analysis and Machine Intelligence
31.5, pp. 855–868. doi: 10.1109/TPAMI.2008.137.

Graves, A., A.-r. Mohamed, and G. Hinton (2013). “Speech recognition with
deep recurrent neural networks”. In: Acoustics, Speech and Signal Processing.
Proceedings of the 2013 IEEE International Conference. IEEE, pp. 6645–6649.
doi: 10.1109/ICASSP.2013.6638947.

Greenwald, G. (2013). “NSA collecting phone records of millions of Verizon
customers daily”. In: The Guardian. url: http://www.guardian.co.uk/
world/2013/jun/06/nsa-phone-records-verizon-court-order.

https://doi.org/10.1145/641007.641053
http://www.opengts.org/
http://www.deeplearningbook.org/contents/mlp.html
http://www.deeplearningbook.org/contents/mlp.html
http://www.deeplearningbook.org/contents/rnn.html
http://www.deeplearningbook.org/contents/rnn.html
https://www.android.com/
https://developers.google.com/gmail/markup/
https://developers.google.com/gmail/markup/
https://developers.google.com/transit/gtfs/reference
https://developers.google.com/transit/gtfs/reference
https://developers.google.com/maps/documentation
https://developers.google.com/maps/documentation
https://www.google.fr/maps/timeline
https://www.google.fr/maps/timeline
https://developers.google.com/android/reference/com/google/android/gms/location/LocationRequest
https://developers.google.com/android/reference/com/google/android/gms/location/LocationRequest
https://developers.google.com/android/reference/com/google/android/gms/location/LocationRequest
https://doi.org/10.1109/TPAMI.2008.137
https://doi.org/10.1109/ICASSP.2013.6638947
http://www.guardian.co.uk/world/2013/jun/06/nsa-phone-records-verizon-court-order
http://www.guardian.co.uk/world/2013/jun/06/nsa-phone-records-verizon-court-order

Other references 155

Grevet, C., D. Choi, D. Kumar, and E. Gilbert (2014). “Overload is Overloaded:
Email in the Age of Gmail”. In: Human Factors in Computing Systems.
Proceedings of the SIGCHI Conference. CHI ’14. Toronto, Ontario, Canada:
ACM, pp. 793–802. doi: 10.1145/2556288.2557013.

Groza, T., S. Handschuh, K. Möller, G. Grimnes, L. Sauermann, E. Minack, C.
Mesnage, M. Jazayeri, G. Reif, and R. Gudjónsdóttir (2007). “The NEPOMUK
Project — On the way to the Social Semantic Desktop”. In: Proceedings of
I-SEMANTICS 2007. (Graz, Austria). Ed. by T. Pellegrini and S. Schaffert,
pp. 201–211. doi: 10379/437.

Guha, R. V., D. Brickley, and S. Macbeth (2016). “Schema.Org: Evolution of
Structured Data on the Web”. In: Commununications of the ACM 59.2,
pp. 44–51. doi: 10.1145/2844544.

Guha, R. and D. Brickley (2004). RDF Vocabulary Description Language 1.0:
RDF Schema. W3C Recommendation. W3C. url: http://www.w3.org/TR/
2004/REC-rdf-schema-20040210/.

Gurrin, C., A. F. Smeaton, and A. R. Doherty (2014). “LifeLogging: Personal Big
Data”. In: Foundations and Trends in Information Retrieval 8.1, pp. 1–125.
doi: 10.1561/1500000033.

Haklay, M. and P. Weber (2008). “OpenStreetMap: User-Generated Street Maps”.
In: IEEE Pervasive Computing 7.4, pp. 12–18. doi: 10.1109/MPRV.2008.80.

Hansmann, U., R. Mettälä, A. Purakayastha, and P. Thompson (2002). SyncML.
Synchronizing and Managing Your Mobile Data. Prentice Hall.

Hariharan, R. and K. Toyama (2004). “Project Lachesis: Parsing and Modeling
Location Histories”. In: Geographic Information Science. Proceedings of the
Third International Conference, GIScience 2004. (Adelphi, MD, USA). Ed. by
M. J. Egenhofer, C. Freksa, and H. J. Miller. Vol. 3234. Lecture Notes in
Computer Science. Berlin, Heidelberg: Springer, pp. 106–124. doi: 10.1007/
978-3-540-30231-5_8.

Harris, S. and A. Seaborne (2013). SPARQL 1.1 Query Language. W3C Rec-
ommendation. W3C. url: http://www.w3.org/TR/2013/REC-sparql11-
query-20130321/.

HAT Data Exchange Ltd. (2017). Hub of All Things. url: https : / /
hubofallthings.com/ (visited on 01/30/2017).

Hellinger, E. (1909). “Neue Begründung der Theorie quadratischer Formen von
unendlichvielen Veränderlichen”. In: Journal für die reine und angewandte
Mathematik 136, pp. 210–271.

Hemminki, S., P. Nurmi, and S. Tarkoma (2013). “Accelerometer-based Trans-
portation Mode Detection on Smartphones”. In: Proceedings of the 11th ACM
Conference on Embedded Networked Sensor Systems. SenSys ’13. (Roma, Italy).
New York, NY, USA: ACM, 13:1–13:14. doi: 10.1145/2517351.2517367.

https://doi.org/10.1145/2556288.2557013
https://doi.org/10379/437
https://doi.org/10.1145/2844544
http://www.w3.org/TR/2004/REC-rdf-schema-20040210/
http://www.w3.org/TR/2004/REC-rdf-schema-20040210/
https://doi.org/10.1561/1500000033
https://doi.org/10.1109/MPRV.2008.80
https://doi.org/10.1007/978-3-540-30231-5_8
https://doi.org/10.1007/978-3-540-30231-5_8
http://www.w3.org/TR/2013/REC-sparql11-query-20130321/
http://www.w3.org/TR/2013/REC-sparql11-query-20130321/
https://hubofallthings.com/
https://hubofallthings.com/
https://doi.org/10.1145/2517351.2517367

156 Other references

Hightower, J., S. Consolvo, A. LaMarca, I. Smith, and J. Hughes (2005). “Learning
and Recognizing the Places We Go”. In: UbiComp 2005: Ubiquitous Computing.
Proceedings of the 7th International Conference, UbiComp 2005. (Tokyo,
Japan). Vol. 3660. Lecture Notes in Computer Science. Springer, pp. 159–176.
doi: 10.1007/11551201_10.

Huang, Z., W. Xu, and K. Yu (2015). Bidirectional LSTM-CRF Models for
Sequence Tagging. arXiv: 1508.01991 [abs].

Hunter, T., P. Abbeel, and A. Bayen (2014). “The Path Inference Filter: Model-
Based Low-Latency Map Matching of Probe Vehicle Data”. In: IEEE Transac-
tions on Intelligent Transportation Systems 15.2, pp. 507–529. doi: 10.1109/
TITS.2013.2282352.

Iannella, R. and J. McKinney (2014). vCard Ontology - for describing People and
Organizations. W3C Note. W3C. url: http://www.w3.org/TR/2014/NOTE-
vcard-rdf-20140522/.

IBM (2016). What is big data? url: https://www-01.ibm.com/software/
data/bigdata/what-is-big-data.html (visited on 12/20/2016).

Incel, O. D., M. Kose, and C. Ersoy (2013). “A Review and Taxonomy of Activity
Recognition on Mobile Phones”. In: BioNanoScience 3.2, pp. 145–171. doi:
10.1007/s12668-013-0088-3.

Intermedia (2014). Intermedia’s Death by 1000 Cloud Apps. The 2014 Intermedia
SMB Cloud Landscape Report. Tech. rep. Intermedia.net. url: https://www.
intermedia.net/assets/pdf/death_by_1000_cloud_apps_ebook.pdf.

Jones, W. (2010). Keeping Found Things Found: The Study and Practice of
Personal Information Management. Morgan Kaufmann Publishers.

Jones, W. and J. Teevan (2011). Personal Information Management. Seattle,
Washington, USA: University of Washington Press.

Kang, J. H., W. Welbourne, B. Stewart, and G. Borriello (2004). “Extracting
Places from Traces of Locations”. In:Wireless Mobile Applications and Services
on WLAN Hotspots. Proceedings of the 2nd ACM International Workshop.
(Philadelphia, PA, USA). WMASH ’04. New York, NY, USA: ACM, pp. 110–
118. doi: 10.1145/1024733.1024748.

Karger, D. R., K. Bakshi, D. Huynh, D. Quan, and V. Sinha (2005). “Haystack:
A Customizable General-Purpose Information Management Tool for End
Users of Semistructured Data”. In: Innovative Data Systems Research. Second
Biennial Conference. CIDR 2005. Asilomar, CA, USA, pp. 13–26. url: http:
//cidrdb.org/cidr2005/papers/P02.pdf.

Karich, P. and S. Schröder (2016). GraphHopper v0.8.2. url: http : / /
graphhopper.com/ (visited on 01/10/2017).

Kim, D. H., Y. Kim, D. Estrin, and M. B. Srivastava (2010). “SensLoc: Sensing
Everyday Places and Paths Using Less Energy”. In: Proceedings of the 8th

https://doi.org/10.1007/11551201_10
http://arxiv.org/abs/1508.01991
https://doi.org/10.1109/TITS.2013.2282352
https://doi.org/10.1109/TITS.2013.2282352
http://www.w3.org/TR/2014/NOTE-vcard-rdf-20140522/
http://www.w3.org/TR/2014/NOTE-vcard-rdf-20140522/
https://www-01.ibm.com/software/data/bigdata/what-is-big-data.html
https://www-01.ibm.com/software/data/bigdata/what-is-big-data.html
https://doi.org/10.1007/s12668-013-0088-3
https://www.intermedia.net/assets/pdf/death_by_1000_cloud_apps_ebook.pdf
https://www.intermedia.net/assets/pdf/death_by_1000_cloud_apps_ebook.pdf
https://doi.org/10.1145/1024733.1024748
http://cidrdb.org/cidr2005/papers/P02.pdf
http://cidrdb.org/cidr2005/papers/P02.pdf
http://graphhopper.com/
http://graphhopper.com/

Other references 157

ACM Conference on Embedded Networked Sensor Systems. SenSys ’10. Zürich,
Switzerland: ACM, pp. 43–56. doi: 10.1145/1869983.1869989.

Koller, D. and N. Friedman (2009a). Probabilistic Graphical Models. Principles and
Techniques. MIT Press. url: http://mitpress.mit.edu/9780262013192.

— (2009b). “Undirected Graphical Models. Principles and Techniques”. In: MIT
Press, pp. 103–156. url: http://mitpress.mit.edu/9780262013192.

komoot (2017). Photon, search-as-you-type with OpenStreetMap. url: https:
//photon.komoot.de (visited on 01/30/2017).

Koontz, L. D. (2008). Privacy: Alternatives Exist for Enhancing Protection of
Personally Identifiable Information. Tech. rep. GAO-08-536. United States
Government Accountability Office. url: http://www.gao.gov/products/
GAO-08-536.

Kraak, M.-J. (2003). “The space-time cube revisited from a geovisualization
perspective”. In: International Cartographic Conference. Proceedings of the
21st. ICC 2003, pp. 1988–1996.

Kwapisz, J. R., G. M. Weiss, and S. A. Moore (2011). “Activity Recognition Using
Cell Phone Accelerometers”. In: ACM SIGKDD Explorations Newsletter 12.2,
pp. 74–82. doi: 10.1145/1964897.1964918.

Lane, N. D., E. Miluzzo, H. Lu, D. Peebles, T. Choudhury, and A. T. Camp-
bell (2010). “A survey of mobile phone sensing”. In: IEEE Communications
Magazine 48.9, pp. 140–150. doi: 10.1109/MCOM.2010.5560598.

Lara, O. D. and M. A. Labrador (2013). “A Survey on Human Activity Recognition
using Wearable Sensors”. In: IEEE Communications Surveys and Tutorials
15.3, pp. 1192–1209. doi: 10.1109/SURV.2012.110112.00192.

Le Bras, T. (2015). Online Overload — It’s Worse Than You Thought. Dashlane.
url: https://blog.dashlane.com/infographic-online-overload-its-
worse-than-you-thought/ (visited on 01/12/2017).

Lefort, L., C. Henson, and K. Taylor (2011). Semantic Sensor Network XG Final
Report. Tech. rep. World Wide Web Consortium. url: https://www.w3.org/
2005/Incubator/ssn/XGR-ssn-20110628/.

Levesque, H. J. (1986). “Knowledge Representation and Reasoning”. In: Annual
Review of Computer Science 1, pp. 255–287. doi: 10.1146/annurev.cs.01.
060186.001351.

Li, Q., Y. Zheng, X. Xie, Y. Chen, W. Liu, and W.-Y. Ma (2008). “Mining
User Similarity Based on Location History”. In: Proceedings of the 16th
ACM SIGSPATIAL International Conference on Advances in Geographic
Information Systems. ACM GIS 2008. (Irvine, CA, USA). New York, NY,
USA: ACM, 34:1–34:10. doi: 10.1145/1463434.1463477.

https://doi.org/10.1145/1869983.1869989
http://mitpress.mit.edu/9780262013192
http://mitpress.mit.edu/9780262013192
https://photon.komoot.de
https://photon.komoot.de
http://www.gao.gov/products/GAO-08-536
http://www.gao.gov/products/GAO-08-536
https://doi.org/10.1145/1964897.1964918
https://doi.org/10.1109/MCOM.2010.5560598
https://doi.org/10.1109/SURV.2012.110112.00192
https://blog.dashlane.com/infographic-online-overload-its-worse-than-you-thought/
https://blog.dashlane.com/infographic-online-overload-its-worse-than-you-thought/
https://www.w3.org/2005/Incubator/ssn/XGR-ssn-20110628/
https://www.w3.org/2005/Incubator/ssn/XGR-ssn-20110628/
https://doi.org/10.1146/annurev.cs.01.060186.001351
https://doi.org/10.1146/annurev.cs.01.060186.001351
https://doi.org/10.1145/1463434.1463477

158 Other references

Liao, L. (2006). “Location-Based Activity Recognition”. PhD thesis. University
of Washington.

Liao, L., D. Fox, and H. Kautz (2007). “Extracting Places and Activities from
GPS Traces Using Hierarchical Conditional Random Fields”. In: The In-
ternational Journal of Robotics Research 26.1, pp. 119–134. doi: 10.1177/
0278364907073775.

Liao, L., D. J. Patterson, D. Fox, and H. Kautz (2007). “Learning and inferring
transportation routines”. In: Artificial Intelligence 171.5–6, pp. 311–331. doi:
10.1016/j.artint.2007.01.006.

Lightbend Inc. (2017). Akka. url: https://akka.io/ (visited on 01/30/2017).

Lou, Y., C. Zhang, Y. Zheng, X. Xie, W. Wang, and Y. Huang (2009). “Map-
matching for Low-sampling-rate GPS Trajectories”. In: Proceedings of the
17th ACM SIGSPATIAL International Conference on Advances in Geographic
Information Systems. GIS ’09. (Seattle, Washington). New York, NY, USA:
ACM, pp. 352–361. doi: 10.1145/1653771.1653820.

Lovett, T., E. O’Neill, J. Irwin, and D. Pollington (2010). “The Calendar As a
Sensor: Analysis and Improvement Using Data Fusion with Social Networks
and Location”. In: Proceedings of the 12th ACM International Conference on
Ubiquitous Computing. UbiComp ’10. (Copenhagen, Denmark). New York,
NY, USA: ACM, pp. 3–12. doi: 10.1145/1864349.1864352.

Lv, M., L. Chen, and G. Chen (2012). “Discovering Personally Semantic Places
from GPS Trajectories”. In: Information and Knowledge Management. Pro-
ceedings of the 21st ACM International Conference. CIKM ’12. Maui, Hawaii,
USA: ACM, pp. 1552–1556. doi: 10.1145/2396761.2398471.

Mander, J. (2015). Internet users have average of 5.54 social media accounts.
Global Web Index. url: https : / / www . globalwebindex . net / blog /
internet-users-have-average-of-5-social-media-accounts (visited
on 01/12/2017).

Manzoni, V., D. Maniloff, K. Kloeckl, and C. Ratti (2010). Transportation mode
identification and real-time CO2 emission estimation using smartphones. Tech.
rep. SENSEable City Lab, MIT, Cambridge.

Maurer, U., A. Smailagic, D. P. Siewiorek, and M. Deisher (2006). “Activity Recog-
nition and Monitoring Using Multiple Sensors on Different Body Positions”.
In: Proceedings of the International Workshop on Wearable and Implantable
Body Sensor Networks. BSN’06. (Cambridge, MA, USA), pp. 116–120. doi:
10.1109/BSN.2006.6.

Mayrhofer, A. and C. Spanring (2010). A Uniform Resource Identifier for Geo-
graphic Locations (’geo’ URI). RFC 5870. IETF. url: https://tools.ietf.
org/html/rfc5870.

https://doi.org/10.1177/0278364907073775
https://doi.org/10.1177/0278364907073775
https://doi.org/10.1016/j.artint.2007.01.006
https://akka.io/
https://doi.org/10.1145/1653771.1653820
https://doi.org/10.1145/1864349.1864352
https://doi.org/10.1145/2396761.2398471
https://www.globalwebindex.net/blog/internet-users-have-average-of-5-social-media-accounts
https://www.globalwebindex.net/blog/internet-users-have-average-of-5-social-media-accounts
https://doi.org/10.1109/BSN.2006.6
https://tools.ietf.org/html/rfc5870
https://tools.ietf.org/html/rfc5870

Other references 159

Mendhak (2011). Lightweight GPS Logging Application For Android. url: https:
//github.com/mendhak/gpslogger/ (visited on 04/18/2016).

Microsoft (2017).Windows Phone API reference. url: https://msdn.microsoft.
com/en-us/library/windows/apps/ff626516(v=vs.105).aspx (visited on
01/30/2017).

Mike, B. and A. Robin (2014). OGC R© SensorML: Model and XML Encoding
Standard. Tech. rep. 12-000. Open Geospatial Consortium. url: http://www.
opengis.net/doc/IS/SensorML/2.0.

Miklós, B. (2015). Computer, respond to this email: Introducing Smart Reply in
Inbox by Gmail. url: https://blog.google/products/gmail/computer-
respond-to-this-email/ (visited on 12/28/2016).

Miller, L. and D. Connolly (2005). RDF Calendar - an application of the Resource
Description Framework to iCalendar Data. W3C Note. W3C. url: http:
//www.w3.org/TR/2005/NOTE-rdfcal-20050929/.

Mockapetris, P. (1987). Domain names – concepts and facilities. RFC 1034. IETF.
url: https://tools.ietf.org/html/rfc1034.

Montjoye, Y.-A. de, E. Shmueli, S. S. Wang, and A. S. Pentland (2014). “openPDS:
Protecting the Privacy of Metadata through SafeAnswers”. In: PLOS ONE
9.7, pp. 1–9. doi: 10.1371/journal.pone.0098790.

Moynihan, T. (2016). How Google’s AI Auto-Magically Answers Your Emails. url:
https://www.wired.com/2016/03/google-inbox-auto-answers-emails/
(visited on 12/28/2016).

Naragon, K. (2015). Subject: Email we just can’t get enough. url: https://blogs.
adobe.com/conversations/2015/08/email.html (visited on 12/28/2016).

Nardi, B. A., D. J. Schiano, and M. Gumbrecht (2004). “Blogging As Social
Activity, or, Would You Let 900 Million People Read Your Diary?” In: Com-
puter Supported Cooperative Work. Proceedings of the 2004 ACM Conference.
CSCW ’04. Chicago, Illinois, USA: ACM, pp. 222–231. doi: 10.1145/1031607.
1031643.

Nepomuk Consortium and OSCAF (2007). OSCAF Ontologies. url: http://
oscaf.sourceforge.net/ (visited on 05/15/2017).

Newson, P. and J. Krumm (2009). “Hidden Markov Map Matching Through Noise
and Sparseness”. In: Proceedings of the 17th ACM SIGSPATIAL International
Conference on Advances in Geographic Information Systems. GIS ’09. (Seattle,
Washington). New York, NY, USA: ACM, pp. 336–343. doi: 10 . 1145 /
1653771.1653818.

Nishida, K., H. Toda, and Y. Koike (2015). “Extracting Arbitrary-shaped Stay
Regions from Geospatial Trajectories with Outliers and Missing Points”. In:
Computational Transportation Science. Proceedings of the 8th ACM SIGSPA-

https://github.com/mendhak/gpslogger/
https://github.com/mendhak/gpslogger/
https://msdn.microsoft.com/en-us/library/windows/apps/ff626516(v=vs.105).aspx
https://msdn.microsoft.com/en-us/library/windows/apps/ff626516(v=vs.105).aspx
http://www.opengis.net/doc/IS/SensorML/2.0
http://www.opengis.net/doc/IS/SensorML/2.0
https://blog.google/products/gmail/computer-respond-to-this-email/
https://blog.google/products/gmail/computer-respond-to-this-email/
http://www.w3.org/TR/2005/NOTE-rdfcal-20050929/
http://www.w3.org/TR/2005/NOTE-rdfcal-20050929/
https://tools.ietf.org/html/rfc1034
https://doi.org/10.1371/journal.pone.0098790
https://www.wired.com/2016/03/google-inbox-auto-answers-emails/
https://blogs.adobe.com/conversations/2015/08/email.html
https://blogs.adobe.com/conversations/2015/08/email.html
https://doi.org/10.1145/1031607.1031643
https://doi.org/10.1145/1031607.1031643
http://oscaf.sourceforge.net/
http://oscaf.sourceforge.net/
https://doi.org/10.1145/1653771.1653818
https://doi.org/10.1145/1653771.1653818

160 Other references

TIAL International Workshop. IWCTS 2015. ACM. Seattle, Washington, USA,
pp. 1–6.

Office of Oversight and Investigations Majority Staff (2013). A Review of the Data
Broker Industry: Collection, Use, and Sale of Consumer Data for Marketing
Purposes. Tech. rep. United States Senate Committee on Commerce, Science,
and Transportation.

O’Hara, K., M. M. Tuffield, and N. Shadbolt (2008). “Lifelogging: Privacy and
empowerment with memories for life”. In: Identity in the Information Society
1.1, pp. 155–172. doi: 10.1007/s12394-009-0008-4.

Oliver, N. and E. Horvitz (2005). “A Comparison of HMMs and Dynamic Bayesian
Networks for Recognizing Office Activities”. In: User Modeling 2005. Proceed-
ings of the 10th International Conference, UM 2005. Ed. by L. Ardissono,
P. Brna, and A. Mitrovic. Vol. 3538. Lecture Notes in Computer Science.
Berlin, Heidelberg: Springer, pp. 199–209. doi: 10.1007/11527886_26.

Otten, H., L. Hildebrandt, T. Nagel, M. Dörk, and B. Müller (2015). “Are there
networks in maps? An experimental visualization of personal movement data”.
In: Personal Visualization Workshop. Proceedings of the IEEE VIS 2015.
Chicago, USA. url: https://uclab.fh-potsdam.de/wp/wp-content/
uploads/ShiftedMaps_Paper_V2.pdf.

ownCloud (2016). ownCloud — A safe home for all your data. url: https:
//owncloud.org/ (visited on 01/15/2017).

Pärkkä, J., M. Ermes, P. Korpipää, J. Mäntyjärvi, J. Peltola, and I. Korhonen
(2006). “Activity Classification Using Realistic Data From Wearable Sen-
sors”. In: IEEE Transactions on Information Technology in Biomedicine 10.1,
pp. 119–128. doi: 10.1109/TITB.2005.856863.

Perreault, S. (2011). vCard Format Specification. RFC 6350. IETF. url: https:
//tools.ietf.org/html/rfc6350.

Peterson, D., S. Gao, A. Malhotra, C. M. Sperberg-McQueen, and H. S. Thompson
(2012). W3C XML Schema Definition Language (XSD) 1.1 Part 2: Datatypes.
W3C Recommendation. W3C. url: https://www.w3.org/TR/xmlschema11-
2/.

Poikola, A., K. Kuikkanieni, and H. Honko (2015). MyData — A Nordic Model for
human-centered personal data management and processing. Tech. rep. Finnish
Ministry of Transport and Communications. url: http://urn.fi/URN:ISBN:
978-952-243-455-5 (visited on 01/15/2017).

Polleres, A., A. Passant, and P. Gearon (2013). SPARQL 1.1 Update. W3C
Recommendation. W3C. url: http://www.w3.org/TR/2013/REC-sparql11-
update-20130321/.

Porter, M. E. and V. E. Millar (1985). “How information gives you competitive
advantage”. In: Harvard Business Review 63.4, pp. 149–160.

https://doi.org/10.1007/s12394-009-0008-4
https://doi.org/10.1007/11527886_26
https://uclab.fh-potsdam.de/wp/wp-content/uploads/ShiftedMaps_Paper_V2.pdf
https://uclab.fh-potsdam.de/wp/wp-content/uploads/ShiftedMaps_Paper_V2.pdf
https://owncloud.org/
https://owncloud.org/
https://doi.org/10.1109/TITB.2005.856863
https://tools.ietf.org/html/rfc6350
https://tools.ietf.org/html/rfc6350
https://www.w3.org/TR/xmlschema11-2/
https://www.w3.org/TR/xmlschema11-2/
http://urn.fi/URN:ISBN:978-952-243-455-5
http://urn.fi/URN:ISBN:978-952-243-455-5
http://www.w3.org/TR/2013/REC-sparql11-update-20130321/
http://www.w3.org/TR/2013/REC-sparql11-update-20130321/

Other references 161

PostgreSQL Global Development Group (2017). PostgreSQL. url: http://www.
postgresql.org (visited on 01/30/2017).

ProtoGeo (2013). Moves — Activity Diary for iPhone and Android. url: https:
//moves-app.com/ (visited on 01/05/2017).

Quddus, M. A., W. Y. Ochieng, and R. B. Noland (2007). “Current map-matching
algorithms for transport applications: State-of-the art and future research
directions”. In: Transportation Research Part C: Emerging Technologies 15.5,
pp. 312–328. doi: 10.1016/j.trc.2007.05.002.

Ravi, N., N. Dandekar, P. Mysore, and M. L. Littman (2005). “Activity Recog-
nition from Accelerometer Data”. In: Proceedings of the 17th Conference on
Innovative Applications of Artificial Intelligence. IAAI-05. (Pittsburgh, PA,
USA). Ed. by N. Jacobstein and B. Porter. Vol. 5. American Association for
Artificial Intelligence, pp. 1541–1546.

Reactive Streams Special Interest Group (2017). Reactive Streams. url: http:
//www.reactive-streams.org/ (visited on 01/30/2017).

Reddy, S., M. Mun, J. Burke, D. Estrin, M. Hansen, and M. Srivastava (2010).
“Using Mobile Phones to Determine Transportation Modes”. In: ACM Trans-
actions on Sensor Networks 6.2, 13:1–13:27. doi: 10.1145/1689239.1689243.

Regalado, A. (2016). “Life Logging Is Dead. Long Live Life Logging?” In: MIT
Technology Review. url: https://www.technologyreview.com/s/601300/
life-logging-is-dead-long-live-life-logging/.

— (2013). “Stephen Wolfram on Personal Analytics”. In: MIT Technology Review.
url: https://www.technologyreview.com/s/514356/stephen-wolfram-
on-personal-analytics/.

Resnick, P. W. (2008). Internet Message Formats. RFC 5322. IETF. url: https:
//tools.ietf.org/html/rfc53222.

Rossini, A. (2012). The sad story of the vCard format and its lack of interoperabil-
ity. url: https://www.ietf.org/mail-archive/web/vcarddav/current/
msg02671.html (visited on 12/28/2016).

Rowley, J. (2007). “The wisdom hierarchy: representations of the DIKW hierar-
chy”. In: Journal of Information Science 33.2, pp. 163–180. doi: 10.1177/
0165551506070706.

Schmandt-Besserat, D. (1996). How writing came about. University of Texas
Press.

Sellen, A. J. and S. Whittaker (2010). “Beyond Total Capture: A Constructive
Critique of Lifelogging”. In: Communications of the ACM 53.5, pp. 70–77.
doi: 10.1145/1735223.1735243.

http://www.postgresql.org
http://www.postgresql.org
https://moves-app.com/
https://moves-app.com/
https://doi.org/10.1016/j.trc.2007.05.002
http://www.reactive-streams.org/
http://www.reactive-streams.org/
https://doi.org/10.1145/1689239.1689243
https://www.technologyreview.com/s/601300/life-logging-is-dead-long-live-life-logging/
https://www.technologyreview.com/s/601300/life-logging-is-dead-long-live-life-logging/
https://www.technologyreview.com/s/514356/stephen-wolfram-on-personal-analytics/
https://www.technologyreview.com/s/514356/stephen-wolfram-on-personal-analytics/
https://tools.ietf.org/html/rfc53222
https://tools.ietf.org/html/rfc53222
https://www.ietf.org/mail-archive/web/vcarddav/current/msg02671.html
https://www.ietf.org/mail-archive/web/vcarddav/current/msg02671.html
https://doi.org/10.1177/0165551506070706
https://doi.org/10.1177/0165551506070706
https://doi.org/10.1145/1735223.1735243

162 Other references

Seth, S. (2011). Introducing schema.org: A Collaboration on Structured Data.
url: http://www.ysearchblog.com/2011/06/02/introducing-schema-
org-a-collaboration-on-structured-data/ (visited on 01/30/2017).

Settles, B. (2004). “Biomedical Named Entity Recognition Using Conditional
Random Fields and Rich Feature Sets”. In: Natural Language Processing
in Biomedicine and its Applications. Proceedings of the International Joint
Workshop. NLPBA ’04. Geneva, Switzerland: Association for Computational
Linguistics, pp. 104–107. url: http://dl.acm.org/citation.cfm?id=
1567594.1567618.

Shoaib, M., S. Bosch, O. D. Incel, H. Scholten, and P. J. M. Havinga (2015). “A
Survey of Online Activity Recognition Using Mobile Phones”. In: Sensors
15.1, pp. 2059–2085. doi: 10.3390/s150102059.

Sjöberg, M., H.-H. Chen, P. Floréen, M. Koskela, K. Kuikkaniemi, T. Lehtiniemi,
and J. Peltonen (2016). “Digital Me: Controlling and Making Sense of My
Digital Footprint”. In: Symbiotic Interaction. 5th International Workshop,
Symbiotic 2016. Vol. 9961. Lecture Notes in Computer Science. Cham: Springer,
pp. 155–167. doi: 10.1007/978-3-319-57753-1_14.

Solove, D. J. (2007). “’I’ve Got Nothing to Hide’ and Other Misunderstandings
of Privacy”. In: San Diego Law Review 44, p. 745. url: http://ssrn.com/
abstract=998565.

— (2008). Understanding Privacy. Harvard University Press.

Soules, C. A. N. and G. R. Ganger (2005). “Connections: Using Context to
Enhance File Search”. In: SOSP ’05, pp. 119–132. doi: 10.1145/1095810.
1095822.

Speier, C., J. S. Valacich, and I. Vessey (1999). “The Influence of Task Interruption
on Individual Decision Making: An Information Overload Perspective”. In:
Decision Sciences 30.2, pp. 337–360. doi: 10.1111/j.1540- 5915.1999.
tb01613.x.

Stenneth, L., O. Wolfson, P. S. Yu, and B. Xu (2011). “Transportation Mode
Detection Using Mobile Phones and GIS Information”. In: Proceedings of the
19th ACM SIGSPATIAL International Conference on Advances in Geographic
Information Systems. GIS ’11. (Chicago, Illinois). New York, NY, USA: ACM,
pp. 54–63. doi: 10.1145/2093973.2093982.

Suchanek, F. M., S. Abiteboul, and P. Senellart (2011). “PARIS: Probabilistic
Alignment of Relations, Instances, and Schema”. In: Proceedings of the VLDB
Endowment 5.3, pp. 157–168. doi: 10.14778/2078331.2078332.

Suchanek, F. M., G. Kasneci, and G. Weikum (2007). “Yago: A Core of Semantic
Knowledge”. In: World Wide Web. Proceedings of the 16th International
Conference. WWW ’07. Banff, Alberta, Canada: ACM, pp. 697–706. doi:
10.1145/1242572.1242667.

http://www.ysearchblog.com/2011/06/02/introducing-schema-org-a-collaboration-on-structured-data/
http://www.ysearchblog.com/2011/06/02/introducing-schema-org-a-collaboration-on-structured-data/
http://dl.acm.org/citation.cfm?id=1567594.1567618
http://dl.acm.org/citation.cfm?id=1567594.1567618
https://doi.org/10.3390/s150102059
https://doi.org/10.1007/978-3-319-57753-1_14
http://ssrn.com/abstract=998565
http://ssrn.com/abstract=998565
https://doi.org/10.1145/1095810.1095822
https://doi.org/10.1145/1095810.1095822
https://doi.org/10.1111/j.1540-5915.1999.tb01613.x
https://doi.org/10.1111/j.1540-5915.1999.tb01613.x
https://doi.org/10.1145/2093973.2093982
https://doi.org/10.14778/2078331.2078332
https://doi.org/10.1145/1242572.1242667

Other references 163

Sun, C. and C. Ellis (1998). “Operational Transformation in Real-time Group
Editors: Issues, Algorithms, and Achievements”. In: Computer Supported
Cooperative Work. Proceedings of the 1998 ACM Conference. CSCW ’98.
Seattle, Washington, USA: ACM, pp. 59–68. doi: 10.1145/289444.289469.

Sutton, C., A. McCallum, et al. (2012). “An introduction to conditional random
fields”. In: Foundations and Trends R© in Machine Learning 4.4, pp. 267–373.
doi: 10.1561/2200000013.

Team, T. O. D. (2017). OpenLayers. url: https://openlayers.org/ (visited
on 01/30/2017).

Teevan, J. (2007). “The Re:Search Engine: Simultaneous Support for Finding
and Re-finding”. In: User Interface Software and Technology. Proceedings of
the 20th Annual ACM Symposium. UIST ’07. Newport, Rhode Island, USA:
ACM, pp. 23–32. doi: 10.1145/1294211.1294217.

Teevan, J., S. T. Dumais, and E. Horvitz (2005). “Personalizing Search via
Automated Analysis of Interests and Activities”. In: Research and Development
in Information Retrieval. Proceedings of the 28th Annual International ACM
SIGIR Conference. SIGIR ’05. Salvador, Brazil: ACM, pp. 449–456. doi:
10.1145/1076034.1076111.

The Apache Software Foundation (2017a). Apache CouchDB. url: https://
couchdb.apache.org/ (visited on 01/30/2017).

— (2017b). Apache Lucene. url: https://lucene.apache.org/ (visited on
01/30/2017).

The New York Times Company (2012). OpenPaths. url: https://openpaths.
cc/ (visited on 01/05/2017).

Thiagarajan, A., J. Biagioni, T. Gerlich, and J. Eriksson (2010). “Coopera-
tive Transit Tracking using Smart-phones”. In: Proceedings of the 8th ACM
Conference on Embedded Networked Sensor Systems. SenSys ’10. (Zürich,
Switzerland). New York, NY, USA: ACM, pp. 85–98. doi: 10.1145/1869983.
1869993.

Thiagarajan, A., L. Ravindranath, K. LaCurts, S. Madden, H. Balakrishnan, S.
Toledo, and J. Eriksson (2009). “VTrack: Accurate, Energy-aware Road Traffic
Delay Estimation Using Mobile Phones”. In: Proceedings of the 7th ACM
Conference on Embedded Networked Sensor Systems. SenSys ’09. Berkeley,
CA, USA: ACM, pp. 85–98. doi: 10.1145/1644038.1644048.

Thudt, A., D. Baur, and S. Carpendale (2013). “Visits: A Spatiotemporal Vi-
sualization of Location Histories”. In: Visualization. Proceedings of the 15th
Eurographics Conference. EuroVis 2013. The Eurographics Association. doi:
10.2312/PE.EuroVisShort.EuroVisShort2013.079-083.

Tilde Inc. (2017). Ember.js – A framework for creating ambitious web applications.
url: https://emberjs.com/ (visited on 01/30/2017).

https://doi.org/10.1145/289444.289469
https://doi.org/10.1561/2200000013
https://openlayers.org/
https://doi.org/10.1145/1294211.1294217
https://doi.org/10.1145/1076034.1076111
https://couchdb.apache.org/
https://couchdb.apache.org/
https://lucene.apache.org/
https://openpaths.cc/
https://openpaths.cc/
https://doi.org/10.1145/1869983.1869993
https://doi.org/10.1145/1869983.1869993
https://doi.org/10.1145/1644038.1644048
https://doi.org/10.2312/PE.EuroVisShort.EuroVisShort2013.079-083
https://emberjs.com/

164 Other references

Trevithick, P. and M. Ruddy (2012). Higgins — Personal Data Service. url:
http://www.eclipse.org/higgins/ (visited on 01/15/2017).

Tridgell, A. and P. Mackerras (1996). The rsync algorithm. Tech. rep. The
Australian National University. doi: 1885/40765.

Tulving, E. (1972). “Episodic and Semantic Memory”. In: Organization of Memory.
Ed. by E. Tulving and W. Donaldson. Academic Press, pp. 382–404.

Uldis, B. and J. G. Breslin (2010). SIOC Core Ontology Specification. Tech. rep.
The SIOC initiative. url: http://rdfs.org/sioc/spec/.

Vassiliadis, P. (2009). “A Survey of Extract–Transform–Load Technology”. In:
International Journal of Data Warehousing and Mining 5.3, pp. 1–27. doi:
10.4018/jdwm.2009070101.

Venkatraman, N. (1994). “IT-Enabled Business Transformation: From Automation
to Business Scope Redefinition”. In: Sloan Management Review 35.2, pp. 73–
87.

Vianna, D., A. Yong, C. Xia, A. Marian, and T. D. Nguyen (2014). “A tool
for personal data extraction”. In: Data Engineering Workshops. 2014 IEEE
30th International Conference. ICDE 2014. Chicago, IL, USA, pp. 80–83. doi:
10.1109/ICDEW.2014.6818307.

Vrandečić, D. and M. Krötzsch (2014). “Wikidata: A Free Collaborative Knowl-
edgebase”. In: Communications of the ACM 57.10, pp. 78–85. doi: 10.1145/
2629489.

W3C (2017). ConverterToRdf – W3C Wiki. url: https://www.w3.org/wiki/
ConverterToRdf (visited on 01/30/2017).

Wache, H., T. Vögele, U. Visser, H. Stuckenschmidt, G. Schuster, H. Neumann,
and S. Hübner (2001). “Ontology-Based Integration of Information — A
Survey of Existing Approaches”. In: Ontologies and Information Sharing.
Proceedings of the IJCAI-01 Workshop, pp. 108–117.

Walker, C. and H. Alrehamy (2015). “Personal Data Lake with Data Gravity
Pull”. In: Big Data and Cloud Computing. Proceedings of the Fifth IEEE
International Conference. BDCloud 2015. Dalian, China, pp. 160–167. doi:
10.1109/BDCloud.2015.62.

Wang, S., C. Chen, and J. Ma (2010). “Accelerometer based transportation mode
recognition on mobile phones”. In: 2010 Asia-Pacific Conference on Wearable
Computing Systems. APWCS 2010. (Shenzhen, China). Los Alamitos, CA,
USA: IEEE Computer Society, pp. 44–46. doi: 10.1109/APWCS.2010.18.

WhatsApp Inc. (2016). One billion. url: https://blog.whatsapp.com/616/
One-billion (visited on 01/30/2017).

— (2017). WhatsApp. url: https : / / www . whatsapp . com/ (visited on
01/30/2017).

http://www.eclipse.org/higgins/
https://doi.org/1885/40765
http://rdfs.org/sioc/spec/
https://doi.org/10.4018/jdwm.2009070101
https://doi.org/10.1109/ICDEW.2014.6818307
https://doi.org/10.1145/2629489
https://doi.org/10.1145/2629489
https://www.w3.org/wiki/ConverterToRdf
https://www.w3.org/wiki/ConverterToRdf
https://doi.org/10.1109/BDCloud.2015.62
https://doi.org/10.1109/APWCS.2010.18
https://blog.whatsapp.com/616/One-billion
https://blog.whatsapp.com/616/One-billion
https://www.whatsapp.com/

Other references 165

Whittaker, S., V. Bellotti, and J. Cwizdka (2011). “Everything through Email”.
In: Personal information management. Ed. by W. Jones and J. Teevan. Seattle,
Washington, USA: University of Washington Press. Chap. 10, pp. 167–189.

Whittaker, S. and C. Sidner (1996). “Email Overload: Exploring Personal Infor-
mation Management of Email”. In: Human Factors in Computing Systems.
Proceedings of the SIGCHI Conference. CHI ’96. Vancouver, British Columbia,
Canada: ACM, pp. 276–283. doi: 10.1145/238386.238530.

Wiesmann, M., A. Schiper, F. Pedone, B. Kemme, and G. Alonso (2000).
“Database Replication Techniques: A Three Parameter Classification”. In:
Reliable Distributed Systems. Proceedings 19th IEEE Symposium. SRDS 2000.
IEEE. Nürnberg, Germany, pp. 206–215. doi: 10.1109/RELDI.2000.885408.

Wikipedia contributors (2017). Intelligent personal assistant – Comparison of
assistants. url: https : / / en . wikipedia . org / w / index . php ? title =
Intelligent_personal_assistant&oldid=759875344#Comparison_of_
assistants (visited on 01/15/2017).

— (2016). List of search engines – Desktop search engines. url: https://en.
wikipedia.org/w/index.php?title=List_of_search_engines&oldid=
755820923#Desktop_search_engines (visited on 01/15/2017).

Wolfram, S. (2012). The Personal Analytics of My Life. url: http://blog.
stephenwolfram.com/2012/03/the-personal-analytics-of-my-life/
(visited on 12/28/2016).

Wood, D., R. Cyganiak, and M. Lanthaler (2014). RDF 1.1 Concepts and Abstract
Syntax. W3C Recommendation. W3C. url: http://www.w3.org/TR/2014/
REC-rdf11-concepts-20140225/.

Wright, A. (2016). “Self-Tracking: Reflections from the BodyTrack Project”. In:
Science and Engineering Ethics. doi: 10.1007/s11948-016-9801-2.

Xamarin Inc. (2017). Mobile App Development & App Creation Software – Xam-
arin. url: https://www.xamarin.com/ (visited on 01/30/2017).

Zheng, Y., Y. Chen, Q. Li, X. Xie, and W.-Y. Ma (2010). “Understanding
Transportation Modes Based on GPS Data for Web Applications”. In: ACM
Transactions on the Web 4.1, 1:1–1:36. doi: 10.1145/1658373.1658374.

https://doi.org/10.1145/238386.238530
https://doi.org/10.1109/RELDI.2000.885408
https://en.wikipedia.org/w/index.php?title=Intelligent_personal_assistant&oldid=759875344#Comparison_of_assistants
https://en.wikipedia.org/w/index.php?title=Intelligent_personal_assistant&oldid=759875344#Comparison_of_assistants
https://en.wikipedia.org/w/index.php?title=Intelligent_personal_assistant&oldid=759875344#Comparison_of_assistants
https://en.wikipedia.org/w/index.php?title=List_of_search_engines&oldid=755820923#Desktop_search_engines
https://en.wikipedia.org/w/index.php?title=List_of_search_engines&oldid=755820923#Desktop_search_engines
https://en.wikipedia.org/w/index.php?title=List_of_search_engines&oldid=755820923#Desktop_search_engines
http://blog.stephenwolfram.com/2012/03/the-personal-analytics-of-my-life/
http://blog.stephenwolfram.com/2012/03/the-personal-analytics-of-my-life/
http://www.w3.org/TR/2014/REC-rdf11-concepts-20140225/
http://www.w3.org/TR/2014/REC-rdf11-concepts-20140225/
https://doi.org/10.1007/s11948-016-9801-2
https://www.xamarin.com/
https://doi.org/10.1145/1658373.1658374

Titre : Une base de connaissance personnelle intégrant les données d’un utilisateur et une chronologie de ses
activités
Mots clefs : gestion de données personnelles, reconnaissance d’activité, intégration de données, reconnaissance de
mode de transport, bases de connaissance, données des capteurs d’un téléphone intelligent

Résumé : Aujourd’hui, la plupart des internautes ont
leurs données dispersées dans plusieurs appareils, ap-
plications et services. La gestion et le contrôle de ses
données sont de plus en plus difficiles. Dans cette thèse,
nous adoptons le point de vue selon lequel l’utilisateur
devrait se voir donner les moyens de récupérer et d’in-
tégrer ses données, sous son contrôle total. À ce titre,
nous avons conçu un système logiciel qui intègre et en-
richit les données d’un utilisateur à partir de plusieurs
sources hétérogènes de données personnelles dans une
base de connaissances RDF. Le logiciel est libre, et son
architecture innovante facilite l’intégration de nouvelles
sources de données et le développement de nouveaux
modules pour inférer de nouvelles connaissances. Nous
montrons tout d’abord comment l’activité de l’utilisateur
peut être déduite des données des capteurs de son télé-
phone intelligent. Nous présentons un algorithme pour
retrouver les points de séjour d’un utilisateur à partir de
son historique de localisation. À l’aide de ces données et
de données provenant d’autres capteurs de son téléphone,
d’informations géographiques provenant d’OpenStreet-
Map, et des horaires de transports en commun, nous

présentons un algorithme de reconnaissance du mode
de transport capable de retrouver les différents modes
et lignes empruntés par un utilisateur lors de ses dé-
placements. L’algorithme reconnaît l’itinéraire pris par
l’utilisateur en retrouvant la séquence la plus probable
dans un champ aléatoire conditionnel dont les proba-
bilités se basent sur la sortie d’un réseau de neurones
artificiels. Nous montrons également comment le système
peut intégrer les données du courrier électronique, des
calendriers, des carnets d’adresses, des réseaux sociaux
et de l’historique de localisation de l’utilisateur dans
un ensemble cohérent. Pour ce faire, le système utilise
un algorithme de résolution d’entité pour retrouver l’en-
semble des différents comptes utilisés par chaque contact
de l’utilisateur, et effectue un alignement spatio-temporel
pour relier chaque point de séjour à l’événement auquel il
correspond dans le calendrier de l’utilisateur. Enfin, nous
montrons qu’un tel système peut également être employé
pour faire de la synchronisation multi-système/multi-
appareil et pour pousser de nouvelles connaissances vers
les sources. Les résultats d’expériences approfondies sont
présentés.

Title: A personal knowledge base integrating user data and activity timeline
Keywords: personal information management, activity recognition, data integration, transportation mode recog-
nition, knowledge bases, mobile device sensor data

Abstract: Typical Internet users today have their data
scattered over several devices, applications, and services.
Managing and controlling one’s data is increasingly dif-
ficult. In this thesis, we adopt the viewpoint that the
user should be given the means to gather and integrate
her data, under her full control. In that direction, we
designed a system that integrates and enriches the data
of a user from multiple heterogeneous sources of per-
sonal information into an RDF knowledge base. The
system is open-source and implements a novel, exten-
sible framework that facilitates the integration of new
data sources and the development of new modules for
deriving knowledge. We first show how user activity
can be inferred from smartphone sensor data. We intro-
duce a time-based clustering algorithm to extract stay
points from location history data. Using data from addi-
tional mobile phone sensors, geographic information from
OpenStreetMap, and public transportation schedules, we

introduce a transportation mode recognition algorithm
to derive the different modes and routes taken by the
user when traveling. The algorithm derives the itinerary
followed by the user by finding the most likely sequence
in a linear-chain conditional random field whose feature
functions are based on the output of a neural network.
We also show how the system can integrate information
from the user’s email messages, calendars, address books,
social network services, and location history into a co-
herent whole. To do so, it uses entity resolution to find
the set of avatars used by each real-world contact and
performs spatiotemporal alignment to connect each stay
point with the event it corresponds to in the user’s cal-
endar. Finally, we show that such a system can also be
used for multi-device and multi-system synchronization
and allow knowledge to be pushed to the sources. We
present extensive experiments.

Université Paris-Saclay
Espace Technologique / Immeuble Discovery
Route de l’Orme aux Merisiers RD 128 / 91190 Saint-Aubin, France

	List of Figures
	List of Tables
	Acknowledgments
	Introduction
	Personal information management
	What is personal information?
	How much information is personal?
	Issues with personal information
	What is personal information management?
	Conclusion

	Personal knowledge
	The nature of personal knowledge
	A model for personal knowledge representation
	Goals of this thesis
	Conclusion

	From data to personal knowledge
	Email messages
	Address books
	Calendars
	Social networking services
	Mobile device sensors
	Related work

	Spatiotemporal knowledge: Stay extraction
	Introduction
	Location history
	Thyme, the stay extraction algorithm
	Evaluation
	Related work
	Conclusion

	Spatiotemporal knowledge: Itinerary recognition
	Introduction
	Transportation networks
	Public transportation routes and schedules
	Mobile sensor observations
	Itinerary recognition
	Movup's itinerary recognition algorithm
	Evaluation
	Related work
	Conclusion

	Personal knowledge integration
	Introduction
	The system
	Enrichers
	Experiments
	Use cases
	Related work
	Conclusion

	Conclusion
	Self-references
	Other references

